Home
Class 11
MATHS
If a+b+c=1, the greatest value of (ab)...

If `a+b+c=1`, the greatest value of
`(ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a)`, is

A

`(1)/(3)`

B

`(1)/(2sqrt(2))`

C

`(1)/(2)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the expression \(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\) given that \(a + b + c = 1\), we can use the method of inequalities. ### Step-by-Step Solution: 1. **Understanding the Expression**: We need to maximize the expression \(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\). 2. **Using the AM-GM Inequality**: We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. For any two non-negative numbers \(x\) and \(y\), we have: \[ \frac{x+y}{2} \geq \sqrt{xy} \] This implies: \[ a + b \geq 2\sqrt{ab} \quad \Rightarrow \quad \frac{ab}{a+b} \leq \frac{ab}{2\sqrt{ab}} = \frac{\sqrt{ab}}{2} \] 3. **Applying AM-GM to Each Term**: - For \(\frac{ab}{a+b}\): \[ \frac{ab}{a+b} \leq \frac{\sqrt{ab}}{2} \] - For \(\frac{bc}{b+c}\): \[ \frac{bc}{b+c} \leq \frac{\sqrt{bc}}{2} \] - For \(\frac{ca}{c+a}\): \[ \frac{ca}{c+a} \leq \frac{\sqrt{ca}}{2} \] 4. **Summing the Inequalities**: \[ \frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a} \leq \frac{\sqrt{ab}}{2} + \frac{\sqrt{bc}}{2} + \frac{\sqrt{ca}}{2} \] 5. **Using \(a + b + c = 1\)**: Let \(a + b + c = 1\). We can express \(c\) in terms of \(a\) and \(b\): \[ c = 1 - a - b \] 6. **Finding the Maximum Value**: To maximize the expression, we can use symmetry and set \(a = b = c\). Since \(a + b + c = 1\), we have: \[ a = b = c = \frac{1}{3} \] 7. **Calculating the Expression**: \[ \frac{ab}{a+b} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)}{\frac{1}{3} + \frac{1}{3}} = \frac{\frac{1}{9}}{\frac{2}{3}} = \frac{1}{6} \] Similarly, for the other two terms: \[ \frac{bc}{b+c} = \frac{1}{6}, \quad \frac{ca}{c+a} = \frac{1}{6} \] Thus, the total is: \[ \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} \] 8. **Conclusion**: The greatest value of the expression \(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\) is \(\frac{1}{2}\).

To find the greatest value of the expression \(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\) given that \(a + b + c = 1\), we can use the method of inequalities. ### Step-by-Step Solution: 1. **Understanding the Expression**: We need to maximize the expression \(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\). 2. **Using the AM-GM Inequality**: We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. For any two non-negative numbers \(x\) and \(y\), we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

The value of (bc)^log(b/c)*(ca)^log(c/a)*(ab)^log(a/b) is

If a, b, c are positive real numbers such that a+b+c=1 , then the greatest value of (1-a)(1-b)(1-c), is

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

If a,b,c and A,B,C in R-{0} such that aA+bB+cD+ sqrt((a^(2)+b^(2)+c^(2))(A^(2)+B^(2)+C^(2)))=0 , then value of (aB)/(bA) +(bC)/(cB) + (cA)/(aC) is

For any positive real number x;write the value of {(x^a)^b}^(1/(ab)) {(x^b)^c}^(1/(bc)) {(x^c)^a}^(1/(ca))

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

If a,b,c are in A.P. prove that the following are also in A.P. (a(b+c))/(bc) , (b(c+a))/(ca) , (c(a+b))/(ab)

If a,b,c are unequal and positive then show that (bc)/(b+c)+(ca)/(c+a)+(ab)/(a+b)<1/2(a+b+c)

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |