Home
Class 11
MATHS
Let a,b,c,d in R such that a^2+b^2+c^2+d...

Let `a,b,c,d in R` such that `a^2+b^2+c^2+d^2=25`

A

`ab+bc+c d+dale(25)/(2)`

B

`ab+bc+c d+dale25`

C

`ab+bc+c d+dale5`

D

`ab+bc+c d+dale(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition \( a^2 + b^2 + c^2 + d^2 = 25 \) and apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to derive relationships between the variables. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality on \( a^2 \) and \( b^2 \)**: \[ \frac{a^2 + b^2}{2} \geq \sqrt{a^2 b^2} = ab \] This implies: \[ a^2 + b^2 \geq 2ab \tag{1} \] 2. **Apply AM-GM Inequality on \( b^2 \) and \( c^2 \)**: \[ \frac{b^2 + c^2}{2} \geq \sqrt{b^2 c^2} = bc \] This implies: \[ b^2 + c^2 \geq 2bc \tag{2} \] 3. **Apply AM-GM Inequality on \( c^2 \) and \( d^2 \)**: \[ \frac{c^2 + d^2}{2} \geq \sqrt{c^2 d^2} = cd \] This implies: \[ c^2 + d^2 \geq 2cd \tag{3} \] 4. **Apply AM-GM Inequality on \( d^2 \) and \( a^2 \)**: \[ \frac{d^2 + a^2}{2} \geq \sqrt{d^2 a^2} = da \] This implies: \[ d^2 + a^2 \geq 2da \tag{4} \] 5. **Add all inequalities (1), (2), (3), and (4)**: \[ (a^2 + b^2) + (b^2 + c^2) + (c^2 + d^2) + (d^2 + a^2) \geq 2(ab + bc + cd + da) \] The left-hand side simplifies to: \[ 2(a^2 + b^2 + c^2 + d^2) \] Therefore, we have: \[ 2(a^2 + b^2 + c^2 + d^2) \geq 2(ab + bc + cd + da) \] 6. **Substituting the given condition**: Since \( a^2 + b^2 + c^2 + d^2 = 25 \): \[ 2 \times 25 \geq 2(ab + bc + cd + da) \] This simplifies to: \[ 50 \geq 2(ab + bc + cd + da) \] Dividing both sides by 2 gives: \[ 25 \geq ab + bc + cd + da \] ### Conclusion: Thus, we conclude that: \[ ab + bc + cd + da \leq 25 \]

To solve the problem, we need to analyze the given condition \( a^2 + b^2 + c^2 + d^2 = 25 \) and apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to derive relationships between the variables. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality on \( a^2 \) and \( b^2 \)**: \[ \frac{a^2 + b^2}{2} \geq \sqrt{a^2 b^2} = ab \] ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Let a , b , c , d , e ,f in R such that a d+b e+cf=sqrt((a^2+b^2+c^2)(d^2+e^2+f^2)) Use vector to prove that (a+b+c)/(sqrt(b^2+b^2+c^2))=(d+e+f)/(sqrt(d^2+e^2+f^2))

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a ,\ b ,\ c ,\ d\ a n d\ p are different real numbers such that: (a^2+b^2+c^2)p^(2)-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0 , then show that a ,\ b ,\ c and d are in G.P.

If a, b, c, d and p are different real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0 , then show that a, b, c and d are in G.P.

Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then the sum of all possible values of |a-d|=

If a ,b ,c ,da n dp are distinct real numbers such that (a^2+b^2+c^2)p^2-2(a b+b c+c d)p+(b^2+c^2+d^2)lt=0, then prove that a ,b ,c , d are in G.P.

If a ,\ b ,\ c ,\ d are in G.P., show that: (a b+b c+c d)^2=(a^2+b^2+c^2)(b^2+c^2+d^2)

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |