Home
Class 11
MATHS
If agt0,bgt0,cgt0, then the minimum valu...

If `agt0,bgt0,cgt0,` then the minimum value of
`sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)),` is

A

4

B

5

C

3

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \[ \sqrt{\frac{4a}{b}} + \sqrt[3]{\frac{27b}{c}} + \sqrt[4]{\frac{c}{108a}}, \] we can apply the method of inequalities, specifically the weighted AM-GM inequality. ### Step-by-Step Solution: 1. **Identify the terms**: We have three terms in the expression: - \( x_1 = \sqrt{\frac{4a}{b}} \) - \( x_2 = \sqrt[3]{\frac{27b}{c}} \) - \( x_3 = \sqrt[4]{\frac{c}{108a}} \) 2. **Assign weights**: We will assign weights to these terms based on their roots: - Weight for \( x_1 \) is 2 (because it is a square root), - Weight for \( x_2 \) is 3 (because it is a cube root), - Weight for \( x_3 \) is 4 (because it is a fourth root). 3. **Apply the weighted AM-GM inequality**: According to the weighted AM-GM inequality: \[ \frac{L_1 x_1 + L_2 x_2 + L_3 x_3}{L_1 + L_2 + L_3} \geq (x_1^{L_1} x_2^{L_2} x_3^{L_3})^{\frac{1}{L_1 + L_2 + L_3}}, \] where \( L_1 = 2, L_2 = 3, L_3 = 4 \). 4. **Calculate the total weights**: \[ L_1 + L_2 + L_3 = 2 + 3 + 4 = 9. \] 5. **Substitute the terms into the inequality**: \[ \frac{2\sqrt{\frac{4a}{b}} + 3\sqrt[3]{\frac{27b}{c}} + 4\sqrt[4]{\frac{c}{108a}}}{9} \geq \left(\sqrt{\frac{4a}{b}}^2 \cdot \sqrt[3]{\frac{27b}{c}}^3 \cdot \sqrt[4]{\frac{c}{108a}}^4\right)^{\frac{1}{9}}. \] 6. **Calculate the product**: \[ = \left(\frac{4a}{b}\right)^{1} \cdot \left(\frac{27b}{c}\right)^{1} \cdot \left(\frac{c}{108a}\right)^{1} = \frac{4a \cdot 27b \cdot c}{b \cdot 108a} = \frac{108bc}{108} = c. \] 7. **Simplify the inequality**: \[ \frac{2\sqrt{\frac{4a}{b}} + 3\sqrt[3]{\frac{27b}{c}} + 4\sqrt[4]{\frac{c}{108a}}}{9} \geq \left(c\right)^{\frac{1}{9}}. \] 8. **Multiply both sides by 9**: \[ 2\sqrt{\frac{4a}{b}} + 3\sqrt[3]{\frac{27b}{c}} + 4\sqrt[4]{\frac{c}{108a}} \geq 9. \] 9. **Conclusion**: The minimum value of the expression is 9. ### Final Answer: The minimum value of the expression is \( \boxed{9} \).

To find the minimum value of the expression \[ \sqrt{\frac{4a}{b}} + \sqrt[3]{\frac{27b}{c}} + \sqrt[4]{\frac{c}{108a}}, \] we can apply the method of inequalities, specifically the weighted AM-GM inequality. ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

If a, bgt0,a+b=1 , then the least value of (1+(1)/(a))(1+(1)/(b)) , is

if Agt0,Bgt0 and A+B= pi/3, then the maximum value of tanA*tanB is

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

Let agt0, bgt0, cgt0 and a+b+c=6 then ((ab+1)^(2))/(b^(2))+((bc+1)^(2))/(c^(2))+((ca+1)^(2))/(a^(2)) may be

If agt0 and blt0, then sqrt(a)sqrt(b) is equal to (where, i=sqrt(-1))

Write the complex number: -b+sqrt(-4ac),(a,cgt0)

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |