Home
Class 11
MATHS
If x+y+z=1, then the minimum value of x...

If `x+y+z=1`, then the minimum value of
`xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)^(2)` is , where x,y,z` inR^(+)`

A

4 xyz

B

3 xyz

C

2 xyz

D

6 xyz

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( E = xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2 \) given that \( x+y+z = 1 \) and \( x, y, z \in \mathbb{R}^+ \), we can follow these steps: ### Step 1: Substitute \( z \) Since \( x + y + z = 1 \), we can express \( z \) in terms of \( x \) and \( y \): \[ z = 1 - x - y \] ### Step 2: Rewrite the expression Now we can rewrite the expression \( E \) in terms of \( x \) and \( y \): \[ E = xy(x+y)^2 + y(1-x-y)(y+(1-x-y))^2 + (1-x-y)x(1-x-y+x)^2 \] ### Step 3: Simplify each term 1. For the first term: \[ xy(x+y)^2 = xy(1-z)^2 = xy(1 - (1-x-y))^2 = xy(1 - z)^2 \] 2. For the second term: \[ yz(y+z)^2 = y(1-x-y)(y + (1-x-y))^2 = y(1-x-y)(1-x)^2 \] 3. For the third term: \[ zx(z+x)^2 = (1-x-y)x((1-x-y)+x)^2 = (1-x-y)x(1-y)^2 \] ### Step 4: Combine the terms Combine all the terms together: \[ E = xy(1-z)^2 + y(1-x-y)(1-x)^2 + (1-x-y)x(1-y)^2 \] ### Step 5: Analyze the expression To minimize \( E \), we can apply the method of Lagrange multipliers or use inequalities. Here, we can apply the AM-GM inequality. ### Step 6: Apply AM-GM inequality Using the AM-GM inequality: \[ \frac{x+y+z}{3} \geq \sqrt[3]{xyz} \] Since \( x+y+z = 1 \): \[ \frac{1}{3} \geq \sqrt[3]{xyz} \implies xyz \leq \frac{1}{27} \] ### Step 7: Substitute back into the expression Now we can substitute \( xyz \) back into the expression for \( E \): \[ E \geq 4xyz \] Given that \( xyz \leq \frac{1}{27} \): \[ E \geq 4 \cdot \frac{1}{27} = \frac{4}{27} \] ### Step 8: Conclusion Thus, the minimum value of \( E \) occurs when \( x = y = z = \frac{1}{3} \): \[ E = 4xyz = 4 \cdot \left(\frac{1}{3}\right)^3 = 4 \cdot \frac{1}{27} = \frac{4}{27} \] ### Final Answer The minimum value of \( xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2 \) given \( x+y+z = 1 \) is \( \frac{4}{27} \). ---

To find the minimum value of the expression \( E = xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2 \) given that \( x+y+z = 1 \) and \( x, y, z \in \mathbb{R}^+ \), we can follow these steps: ### Step 1: Substitute \( z \) Since \( x + y + z = 1 \), we can express \( z \) in terms of \( x \) and \( y \): \[ z = 1 - x - y \] ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If x = 2, y = 3 and z = -1, find the values of : (xy)/(z)

If x > 0, y > 0, z>0 and x + y + z = 1 then the minimum value of x/(2-x)+y/(2-y)+z/(2-z) is:

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

If x^(2)+y^(2)+z^(2)=1"for " x,y,z inR, then the maximum value of x^(3)+y^(3)+z^(3)-3xyz is

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

If x^(3)+y^(3)+z^(3)=3xyz and x+y+z=0, find the value of ((x+y)^(2))/(xy)=((y+z)^(2))/(yz) +((z+x)^(2))/(zx)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |