Home
Class 11
MATHS
If a,bgt0 then the maximum value of (a^(...

If `a,bgt0` then the maximum value of `(a^(3)b)/((a+b)^(4)),` is

A

`(81)/(512)`

B

`(27)/(256)`

C

`(27)/(512)`

D

`(81)/(256)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(\frac{a^3 b}{(a+b)^4}\) for \(a, b > 0\), we can use the AM-GM inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality**: We want to apply the AM-GM inequality to the terms \(a, a, a, b\). According to the AM-GM inequality: \[ \frac{a + a + a + b}{4} \geq \sqrt[4]{a^3 b} \] This simplifies to: \[ \frac{3a + b}{4} \geq \sqrt[4]{a^3 b} \] **Hint**: Remember that AM-GM states that the arithmetic mean is greater than or equal to the geometric mean. 2. **Raise Both Sides to the Power of 4**: To eliminate the fourth root, raise both sides to the power of 4: \[ \left(\frac{3a + b}{4}\right)^4 \geq a^3 b \] **Hint**: Raising both sides of an inequality to an even power preserves the inequality. 3. **Rearranging the Inequality**: Now, we can express \(a^3 b\) in terms of \(3a + b\): \[ a^3 b \leq \left(\frac{3a + b}{4}\right)^4 \] 4. **Substituting Back into the Original Expression**: We want to find the maximum of: \[ \frac{a^3 b}{(a+b)^4} \] From the previous step, we know: \[ a^3 b \leq \left(\frac{3a + b}{4}\right)^4 \] Therefore, \[ \frac{a^3 b}{(a+b)^4} \leq \frac{\left(\frac{3a + b}{4}\right)^4}{(a+b)^4} \] 5. **Finding the Maximum Value**: To find the maximum value, we need to consider the case when equality holds in the AM-GM inequality, which occurs when all terms are equal: \[ a = a = a = b \implies 3a = b \implies b = 3a \] Substituting \(b = 3a\) into the expression: \[ a + b = a + 3a = 4a \] Thus, \[ \frac{a^3 (3a)}{(4a)^4} = \frac{3a^4}{256a^4} = \frac{3}{256} \] 6. **Final Calculation**: The maximum value of \(\frac{a^3 b}{(a+b)^4}\) occurs at: \[ \frac{27}{256} \] Therefore, the maximum value of \(\frac{a^3 b}{(a+b)^4}\) is \(\frac{27}{256}\). ### Final Answer: The maximum value of \(\frac{a^3 b}{(a+b)^4}\) is \(\frac{27}{256}\).

To find the maximum value of the expression \(\frac{a^3 b}{(a+b)^4}\) for \(a, b > 0\), we can use the AM-GM inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality**: We want to apply the AM-GM inequality to the terms \(a, a, a, b\). According to the AM-GM inequality: \[ \frac{a + a + a + b}{4} \geq \sqrt[4]{a^3 b} ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

If a and b are positive numbers such that a^(2) + b^(2) = 4 , then find the maximum value of a^(2) b .

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahattj+(1)/(b)hatk , then the maximum value of (10)/(5+alpha*beta) is

If a, bgt0,a+b=1 , then the least value of (1+(1)/(a))(1+(1)/(b)) , is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |