Home
Class 11
MATHS
Let x, y, z be positive real numbers suc...

Let x, y, z be positive real numbers such that `x + y + z = 12` and `x^3y^4z^5 = (0.1)(600)^3`. Then `x^3+y^3+z^3` is

A

270

B

258

C

216

D

342

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( x^3 + y^3 + z^3 \) given that \( x + y + z = 12 \) and \( x^3 y^4 z^5 = (0.1)(600)^3 \). ### Step 1: Set up the equations We have two equations: 1. \( x + y + z = 12 \) 2. \( x^3 y^4 z^5 = 0.1 \times (600)^3 \) ### Step 2: Calculate \( 0.1 \times (600)^3 \) First, we calculate \( 600^3 \): \[ 600^3 = 216000000 \] Now, multiplying by \( 0.1 \): \[ 0.1 \times 600^3 = 0.1 \times 216000000 = 21600000 \] Thus, we have: \[ x^3 y^4 z^5 = 21600000 \] ### Step 3: Apply the Weighted AM-GM Inequality We will use the Weighted Arithmetic Mean-Geometric Mean (AM-GM) inequality. The weights for \( x, y, z \) are \( 3, 4, 5 \) respectively. According to the AM-GM inequality: \[ \frac{3 \cdot \frac{x}{3} + 4 \cdot \frac{y}{4} + 5 \cdot \frac{z}{5}}{3 + 4 + 5} \geq \left( \frac{x}{3} \right)^3 \left( \frac{y}{4} \right)^4 \left( \frac{z}{5} \right)^5 \] This simplifies to: \[ \frac{x + y + z}{12} \geq \left( \frac{x^3}{3^3} \cdot \frac{y^4}{4^4} \cdot \frac{z^5}{5^5} \right)^{\frac{1}{12}} \] ### Step 4: Substitute \( x + y + z \) Substituting \( x + y + z = 12 \): \[ 1 \geq \left( \frac{x^3 y^4 z^5}{3^3 \cdot 4^4 \cdot 5^5} \right)^{\frac{1}{12}} \] Now substituting \( x^3 y^4 z^5 = 21600000 \): \[ 1 \geq \left( \frac{21600000}{3^3 \cdot 4^4 \cdot 5^5} \right)^{\frac{1}{12}} \] ### Step 5: Calculate the denominator Calculating \( 3^3 \cdot 4^4 \cdot 5^5 \): \[ 3^3 = 27, \quad 4^4 = 256, \quad 5^5 = 3125 \] Now, calculating the product: \[ 3^3 \cdot 4^4 \cdot 5^5 = 27 \cdot 256 \cdot 3125 \] Calculating step by step: \[ 27 \cdot 256 = 6912 \] \[ 6912 \cdot 3125 = 21600000 \] Thus, we have: \[ 3^3 \cdot 4^4 \cdot 5^5 = 21600000 \] ### Step 6: Apply AM-GM condition Now substituting back: \[ 1 \geq \left( \frac{21600000}{21600000} \right)^{\frac{1}{12}} = 1 \] This equality holds, indicating that \( x, y, z \) must be proportional to their weights: \[ \frac{x}{3} = \frac{y}{4} = \frac{z}{5} \] ### Step 7: Solve for \( x, y, z \) Let \( k \) be the common ratio: \[ x = 3k, \quad y = 4k, \quad z = 5k \] Substituting into the sum: \[ 3k + 4k + 5k = 12 \implies 12k = 12 \implies k = 1 \] Thus: \[ x = 3, \quad y = 4, \quad z = 5 \] ### Step 8: Calculate \( x^3 + y^3 + z^3 \) Now we can calculate: \[ x^3 + y^3 + z^3 = 3^3 + 4^3 + 5^3 \] Calculating each term: \[ 3^3 = 27, \quad 4^3 = 64, \quad 5^3 = 125 \] Adding them together: \[ 27 + 64 + 125 = 216 \] ### Final Answer Thus, the value of \( x^3 + y^3 + z^3 \) is: \[ \boxed{216} \]

To solve the problem step by step, we need to find the value of \( x^3 + y^3 + z^3 \) given that \( x + y + z = 12 \) and \( x^3 y^4 z^5 = (0.1)(600)^3 \). ### Step 1: Set up the equations We have two equations: 1. \( x + y + z = 12 \) 2. \( x^3 y^4 z^5 = 0.1 \times (600)^3 \) ### Step 2: Calculate \( 0.1 \times (600)^3 \) ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are positive real numbers such that x+y+z=a, then

If x. y, z are positive real numbers such that x^2+y^2+z^2=27, then x^3+y^3+z^3 has

Let x,y,z be positive real numbers such that log_(2x)z=3, log_(5y)z=6 and log_(xy)z=2/3 then the value of z is

If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7 , then the least value of 2x+5y+3z , is

If x,y,z are three real numbers such that x+ y +z =4 and x^(2) + y^(2) +z^(2) =6 ,then (1) 2/3 le x,y,z le 2 (2) 0 le x,y,z le 2 (3) 1 le x,y,z le 3 (4) 2 le x,y,z le 3

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

Let x,y,z are positive reals and x +y+z=60 and x gt 3. Maximum value of xyz is :

If x,y and z are three real numbers such that x+y+z=4 and x^2+y^2+z^2=6 ,then show that each of x,y and z lie in the closed interval [2/3,2]

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |