Home
Class 11
MATHS
Statement -1 For every natural number n ...

Statement -1 For every natural number `n ge 2(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(n)ge sqrt(n)`,
Statement -2 For every natural number `n ge 2 sqrt(n(n+1))lt n+1`

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
B

Using
`(a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(n))/(n))^(m)` for `mlt0` or `mgt1,`
we have
`((1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n)))/(n)gt((1+2+...n)/(n))^(-1//2)`
`implies" "(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtnsqrt((2)/(n+1))`
`implies" "(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n)sqrt((2n)/(n+1))`
`implies" "(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n)`
`" "[because 2ngtn+1" for all "nle2]`
So, statement-1 is true.
We have,
`n(n+1)lt(n+1)(n+1)" for all "nge2`
`implies" "sqrt(n(n+1))ltn+1" for all "nge2`
So, statement-2 is true.
Clearly, statement-2 is not a correct explanation for statement-1.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|1 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 1 - Solved Mcq|54 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Statement-1: For every natural number n ge 2, (1)/(sqrt1)+(1)/(sqrt2)+…..(1)/(sqrtn) gt sqrtn Statement-2: For every natural number n ge 2, sqrt(n(n+1) lt n+1

Statement-1: For every natural number nge2 , (1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n) Statement-2: For every natural number nge2, sqrt(n(n+1))ltn+1

Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

If n is a natural number, then sqrt(n) is:

Statement -1 For each natural number n,(n+1)^(7)-n^7-1 is divisible by 7. Statement -2 For each natural number n,n^7-n is divisible by 7.

For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

Statement - I : The variance of first n even natural numbers is (n^(2) - 1)/(4) Statement - II : The sum of first n natural numbers is (n(n+1))/(2) and the sum of the squares of first n natural numbers is (n(n+1)(2n+1))/(6)

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is