Home
Class 11
MATHS
The value of {(sqrt(2) +1)^(5) + (sqrt(2...

The value of `{(sqrt(2) +1)^(5) + (sqrt(2) -1)^(5)}` ,is

A

58

B

`58sqrt(2)`

C

42

D

`42sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\sqrt{2} + 1)^{5} + (\sqrt{2} - 1)^{5}\), we can use the Binomial Theorem. The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] ### Step 1: Apply the Binomial Theorem We will apply the Binomial Theorem to both \((\sqrt{2} + 1)^{5}\) and \((\sqrt{2} - 1)^{5}\). For \((\sqrt{2} + 1)^{5}\): \[ (\sqrt{2} + 1)^{5} = \sum_{k=0}^{5} \binom{5}{k} (\sqrt{2})^{5-k} (1)^{k} \] For \((\sqrt{2} - 1)^{5}\): \[ (\sqrt{2} - 1)^{5} = \sum_{k=0}^{5} \binom{5}{k} (\sqrt{2})^{5-k} (-1)^{k} \] ### Step 2: Add the Two Expansions Now, we add the two expansions: \[ (\sqrt{2} + 1)^{5} + (\sqrt{2} - 1)^{5} = \sum_{k=0}^{5} \binom{5}{k} (\sqrt{2})^{5-k} (1)^{k} + \sum_{k=0}^{5} \binom{5}{k} (\sqrt{2})^{5-k} (-1)^{k} \] ### Step 3: Simplify the Expression When we add these two expansions, the terms where \(k\) is odd will cancel out, and the terms where \(k\) is even will double: \[ = 2 \left( \binom{5}{0} (\sqrt{2})^{5} + \binom{5}{2} (\sqrt{2})^{3} + \binom{5}{4} (\sqrt{2})^{1} \right) \] ### Step 4: Calculate the Binomial Coefficients Now we calculate the binomial coefficients: - \(\binom{5}{0} = 1\) - \(\binom{5}{2} = 10\) - \(\binom{5}{4} = 5\) ### Step 5: Substitute and Simplify Substituting these values into the expression gives: \[ = 2 \left( 1 \cdot (\sqrt{2})^{5} + 10 \cdot (\sqrt{2})^{3} + 5 \cdot (\sqrt{2})^{1} \right) \] Calculating the powers of \(\sqrt{2}\): - \((\sqrt{2})^{5} = 2^{5/2} = 4\sqrt{2}\) - \((\sqrt{2})^{3} = 2^{3/2} = 2\sqrt{2}\) - \((\sqrt{2})^{1} = \sqrt{2}\) Now substituting these values: \[ = 2 \left( 4\sqrt{2} + 10 \cdot 2\sqrt{2} + 5\sqrt{2} \right) \] \[ = 2 \left( 4\sqrt{2} + 20\sqrt{2} + 5\sqrt{2} \right) \] \[ = 2 \left( 29\sqrt{2} \right) \] \[ = 58\sqrt{2} \] ### Final Answer Thus, the value of \((\sqrt{2} + 1)^{5} + (\sqrt{2} - 1)^{5}\) is: \[ \boxed{58\sqrt{2}} \]

To find the value of \((\sqrt{2} + 1)^{5} + (\sqrt{2} - 1)^{5}\), we can use the Binomial Theorem. The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] ### Step 1: Apply the Binomial Theorem ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the value of {(sqrt(2)+1)^5+(sqrt(2)-1)^5}dot

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50)}

Evaluate the following: (i) (2 + sqrt(5) )^(5) + (2 - sqrt(5) )^(5) (ii) ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) Hence, show in (ii), without using tables, that the value of ( sqrt(3) + 1)^(5) lies between 152 and 153.

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of tan(1/2 cos^(-1)(2/(sqrt(5)))) is

Rationalize the denominatior and simplify to find the value of (4)/(sqrt(5) + sqrt(3)) (Given : sqrt(5) = 2.236 and sqrt(3) = 1.732)

The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-12sqrt(2)/(16)+..+++..+ add.infty is

The value of tan[(1)/(2)cos^(-1)((sqrt(5))/(3))] is :

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. The value of {(sqrt(2) +1)^(5) + (sqrt(2) -1)^(5)} ,is

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |