Home
Class 11
MATHS
IfC0,C1,C2..Cn denote the coefficients ...

If`C_0,C_1,C_2..C_n` denote the coefficients in the binomial expansion of `(1 +x)^n`, then `C_0 + 2.C_1 +3.C_2+. (n+1) C_n`

A

`n2^(n-1)`

B

`(n+ 1)2^(n-1)`

C

`(n+ 2)2^(n-1)`

D

`(n+ 2) 2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( S = C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n \), where \( C_r \) are the coefficients in the binomial expansion of \( (1 + x)^n \). ### Step-by-step Solution: 1. **Express the Sum**: We can express the sum \( S \) as: \[ S = \sum_{r=0}^{n} (r + 1) C_r \] This can be rewritten as: \[ S = \sum_{r=0}^{n} r C_r + \sum_{r=0}^{n} C_r \] 2. **Identify the Second Sum**: The second sum \( \sum_{r=0}^{n} C_r \) is simply the sum of the coefficients in the binomial expansion of \( (1 + x)^n \) when \( x = 1 \): \[ \sum_{r=0}^{n} C_r = (1 + 1)^n = 2^n \] 3. **Calculate the First Sum**: For the first sum \( \sum_{r=0}^{n} r C_r \), we can use the identity \( r C_r = n C_{r-1} \): \[ \sum_{r=0}^{n} r C_r = \sum_{r=1}^{n} n C_{r-1} = n \sum_{r=0}^{n-1} C_r \] The sum \( \sum_{r=0}^{n-1} C_r \) is again the sum of the coefficients in the binomial expansion of \( (1 + x)^{n-1} \) when \( x = 1 \): \[ \sum_{r=0}^{n-1} C_r = (1 + 1)^{n-1} = 2^{n-1} \] Therefore: \[ \sum_{r=0}^{n} r C_r = n \cdot 2^{n-1} \] 4. **Combine the Results**: Now, substituting back into our expression for \( S \): \[ S = n \cdot 2^{n-1} + 2^n \] We can factor out \( 2^{n-1} \): \[ S = 2^{n-1} (n + 2) \] 5. **Final Result**: Thus, the final result for the sum \( C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n \) is: \[ S = 2^{n-1} (n + 2) \]

To solve the problem, we need to find the sum \( S = C_0 + 2C_1 + 3C_2 + \ldots + (n+1)C_n \), where \( C_r \) are the coefficients in the binomial expansion of \( (1 + x)^n \). ### Step-by-step Solution: 1. **Express the Sum**: We can express the sum \( S \) as: \[ S = \sum_{r=0}^{n} (r + 1) C_r ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_o, C_1, C_2 ....,C_n C denote the binomial coefficients in the expansion of (1 + x)^n, then 1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. IfC0,C1,C2..Cn denote the coefficients in the binomial expansion of (...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |