Home
Class 11
MATHS
If Co, C1, C2 ....,CnC denote the binomi...

If `C_o, C_1, C_2 ....,C_n`C denote the binomial coefficients in the expansion of `(1 + x)^n,` then `1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =`

A

`(n+2)(n+3)3^(n-3)`

B

`n^(2) (n+3) 2^(n-3)`

C

`n^(2) (n+3) 2^(n)`

D

`n(n+ 1)(n+2)2^(n-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(1^3 \cdot C_1 + 2^3 \cdot C_2 + 3^3 \cdot C_3 + \ldots + n^3 \cdot C_n\), where \(C_k\) are the binomial coefficients in the expansion of \((1 + x)^n\). ### Step-by-step Solution: 1. **Understand the Binomial Expansion**: The binomial expansion of \((1 + x)^n\) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \(C_k = \binom{n}{k}\). 2. **Differentiate the Expansion**: Differentiate both sides with respect to \(x\): \[ \frac{d}{dx}[(1 + x)^n] = n(1 + x)^{n-1} \] This gives: \[ C_1 + 2C_2 x + 3C_3 x^2 + \ldots + nC_n x^{n-1} = n(1 + x)^{n-1} \] 3. **Multiply by \(x\)**: Multiply the entire equation by \(x\): \[ C_1 x + 2C_2 x^2 + 3C_3 x^3 + \ldots + nC_n x^n = n x(1 + x)^{n-1} \] 4. **Differentiate Again**: Differentiate this equation again with respect to \(x\): \[ C_1 + 2 \cdot 2C_2 x + 3 \cdot 3C_3 x^2 + \ldots + n \cdot nC_n x^{n-1} = n \left[(1 + x)^{n-1} + x(n-1)(1 + x)^{n-2}\right] \] 5. **Multiply by \(x\) Again**: Multiply the equation by \(x\) again: \[ C_1 x + 2 \cdot 2C_2 x^2 + 3 \cdot 3C_3 x^3 + \ldots + n \cdot nC_n x^n = n x(1 + x)^{n-1} + n(n-1)x^2(1 + x)^{n-2} \] 6. **Differentiate Once More**: Differentiate this equation once more: \[ C_1 + 2 \cdot 2C_2 x + 3 \cdot 3C_3 x^2 + \ldots + n \cdot nC_n x^{n-1} = n \left[(1 + x)^{n-1} + x(n-1)(1 + x)^{n-2}\right] \] 7. **Substitute \(x = 1\)**: Set \(x = 1\) in the final differentiated equation: \[ C_1 + 2^3 C_2 + 3^3 C_3 + \ldots + n^3 C_n = n \left[(1 + 1)^{n-1} + 1(n-1)(1 + 1)^{n-2}\right] \] This simplifies to: \[ C_1 + 2^3 C_2 + 3^3 C_3 + \ldots + n^3 C_n = n \left[2^{n-1} + (n-1)2^{n-2}\right] \] 8. **Final Simplification**: Combine the terms: \[ = n \left[2^{n-2}(2 + (n-1))\right] = n \cdot n \cdot 2^{n-2} \] Thus, the final result is: \[ 1^3 \cdot C_1 + 2^3 \cdot C_2 + 3^3 \cdot C_3 + \ldots + n^3 \cdot C_n = n^2 \cdot 2^{n-2} \]

To solve the problem, we need to find the value of the expression \(1^3 \cdot C_1 + 2^3 \cdot C_2 + 3^3 \cdot C_3 + \ldots + n^3 \cdot C_n\), where \(C_k\) are the binomial coefficients in the expansion of \((1 + x)^n\). ### Step-by-step Solution: 1. **Understand the Binomial Expansion**: The binomial expansion of \((1 + x)^n\) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If Co, C1, C2 ....,CnC denote the binomial coefficients in the expansi...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |