Home
Class 11
MATHS
If ""(n)C(0), ""(n)C(1), ""(n)C(2), .......

If `""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), ` denote the binomial coefficients in the expansion of `(1 + x)^(n) and p + q =1` ` sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = ` .

A

npq

B

np (p+q)

C

`np (np + q)`

D

` np (p + nq)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} p^r q^{n-r} \] where \( p + q = 1 \). ### Step-by-step Solution: 1. **Understanding the Summation**: We start with the expression \(\sum_{r=0}^{n} r^2 \binom{n}{r} p^r q^{n-r}\). This summation involves binomial coefficients and powers of \(p\) and \(q\). 2. **Using the Identity for \(r \binom{n}{r}\)**: We can use the identity: \[ r \binom{n}{r} = n \binom{n-1}{r-1} \] This allows us to rewrite the summation: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} p^r q^{n-r} = \sum_{r=0}^{n} r \cdot r \binom{n}{r} p^r q^{n-r} \] We can express \(r\) as \(n \cdot \binom{n-1}{r-1}\), leading to: \[ = n \sum_{r=1}^{n} r \binom{n-1}{r-1} p^r q^{n-r} \] 3. **Changing the Index of Summation**: We change the index of summation by letting \(k = r - 1\): \[ = n \sum_{k=0}^{n-1} (k+1) \binom{n-1}{k} p^{k+1} q^{(n-1)-k} \] This can be split into two parts: \[ = n \left( \sum_{k=0}^{n-1} \binom{n-1}{k} p^{k+1} q^{(n-1)-k} + \sum_{k=0}^{n-1} k \binom{n-1}{k} p^{k+1} q^{(n-1)-k} \right) \] 4. **Evaluating the First Summation**: The first summation simplifies to: \[ = n p \sum_{k=0}^{n-1} \binom{n-1}{k} p^k q^{(n-1)-k} = n p (p + q)^{n-1} = n p \] 5. **Evaluating the Second Summation**: The second summation can be evaluated using the identity: \[ k \binom{n-1}{k} = (n-1) \binom{n-2}{k-1} \] Thus, \[ \sum_{k=0}^{n-1} k \binom{n-1}{k} p^{k+1} q^{(n-1)-k} = (n-1) p \sum_{k=1}^{n-1} \binom{n-2}{k-1} p^{k-1} q^{(n-2)-(k-1)} \] This simplifies to: \[ = (n-1) p (p + q)^{n-2} = (n-1) p \] 6. **Combining Results**: Combining both parts, we have: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} p^r q^{n-r} = n p + (n-1) p = n^2 p \] 7. **Final Result**: Since \(p + q = 1\), the final result is: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} p^r q^{n-r} = n^2 p \]

To solve the problem, we need to evaluate the summation: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} p^r q^{n-r} \] where \( p + q = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If x + y = 1 , prove that sum_(r=0)^(n) r""^(n)C_(r) x^(r ) y^(n-r) = nx .

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If ""(n)C(0), ""(n)C(1), ""(n)C(2), ...., ""(n)C(n), denote the bi...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |