Home
Class 11
MATHS
If (1 + x)^n = C0+C1x+C2x^2 + ... + Cnx^...

If `(1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n`,then for n odd,`C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2`, is equal to

A

0

B

`2^(2n - 3)`

C

` ((2n)!)/(2(!n)^(2))`

D

`2^(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 \) given that \( n \) is odd in the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). 2. **Expanding \( (1 - x)^n \)**: Similarly, the expansion of \( (1 - x)^n \) is: \[ (1 - x)^n = C_0 - C_1 x + C_2 x^2 - C_3 x^3 + \ldots + (-1)^n C_n x^n \] 3. **Adding the Two Expansions**: Now, we can add the two expansions: \[ (1 + x)^n + (1 - x)^n = 2C_0 + 2C_2 x^2 + 2C_4 x^4 + \ldots \] All odd powers of \( x \) cancel out because they have opposite signs. 4. **Subtracting the Two Expansions**: Next, we subtract the two expansions: \[ (1 + x)^n - (1 - x)^n = 2C_1 x + 2C_3 x^3 + 2C_5 x^5 + \ldots \] Here, all even powers of \( x \) cancel out. 5. **Finding the Coefficient of \( x^n \)**: To find \( C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 \), we can use the identity: \[ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 = \text{Coefficient of } x^n \text{ in } (1+x)^n (1-x)^n \] This simplifies to: \[ (1+x)^n (1-x)^n = (1-x^2)^n \] 6. **Evaluating \( (1-x^2)^n \)**: The coefficient of \( x^n \) in \( (1-x^2)^n \) is 0 when \( n \) is odd because \( x^n \) cannot be formed from \( x^2 \) terms. 7. **Conclusion**: Therefore, we conclude that: \[ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 = 0 \] ### Final Answer: The value of \( C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 \) for odd \( n \) is **0**.

To solve the problem, we need to find the value of the expression \( C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 \) given that \( n \) is odd in the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_1 - C_3 + C_5 + ……

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_nx^n then the value of (C_0)^2+(C_1)^2/2+(C_2)^2/3+...+(C_n)^2/(n+1) is equal to

If (1 + x + x^2)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ……..C_nx^n then find C_0 + C_3 + C_6 + …….

If C_0, C_1, C_2,………C_n are binomial coefficients int eh expansion of (1+x)^n then and n is even, then C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

If (1 + x + x^2)^n = (C_0 + C_1x + C_2 x^2 + ............) then the value of C_0 C_1-C_1C_2+C_2C_3.....

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If (1 + x)^n = C0+C1x+C2x^2 + ... + Cnx^n,then for n odd,C0^2-C1^2+C2^...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |