Home
Class 11
MATHS
If C(0) , C(1) , C(2) ,…, C(n) are coef...

If `C_(0) , C_(1) , C_(2) ,…, C_(n) ` are coefficients in the
binomial expansion of `(1 + x)^(n)` and n is even , then
`C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) ` is equal to .

A

0

B

`(-1)^(n//2)(n!)/([((n)/(2))!]^(2))`

C

`(-1)^(n) ((2n)!)/((n!)^(2))`

D

`((2n)!)/((n!)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 \] where \(C_k\) are the coefficients in the binomial expansion of \((1 + x)^n\) and \(n\) is even. ### Step-by-Step Solution: 1. **Understanding Binomial Coefficients**: The coefficients \(C_k\) in the expansion of \((1 + x)^n\) are given by: \[ C_k = \binom{n}{k} \] for \(k = 0, 1, 2, \ldots, n\). 2. **Using the Binomial Theorem**: The binomial theorem states: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] Therefore, we can write: \[ C_k = \binom{n}{k} \] 3. **Substituting into the Expression**: We need to evaluate: \[ \sum_{k=0}^{n} (-1)^k C_k^2 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 \] 4. **Using the Identity for Squared Binomial Coefficients**: There is a known identity that relates the squared binomial coefficients to another binomial coefficient: \[ \sum_{k=0}^{n} (-1)^k \binom{n}{k}^2 = (-1)^{n} \binom{n/2}{n/2} \] when \(n\) is even. 5. **Evaluating the Expression**: Since \(n\) is even, we can express \(n\) as \(2m\) for some integer \(m\). Thus: \[ \sum_{k=0}^{2m} (-1)^k \binom{2m}{k}^2 = (-1)^{2m} \binom{m}{m} = 1 \] 6. **Final Result**: Therefore, the value of the expression is: \[ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 = 1 \] ### Conclusion: The final answer is: \[ \boxed{1} \]

To solve the problem, we need to evaluate the expression \[ C_0^2 - C_1^2 + C_2^2 - C_3^2 + \ldots + (-1)^n C_n^2 \] where \(C_k\) are the coefficients in the binomial expansion of \((1 + x)^n\) and \(n\) is even. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1) C_(2) ….., denote the binomial coefficients in the expansion of (1 + x)^(n) , then (C_(0))/(2) - (C_(1))/(3) + (C_(2))/(4)- (C_(3))/(5)+...+ (-1)^(n)(C_(n))/(n+2) =

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2) equals

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If C(0) , C(1) , C(2) ,…, C(n) are coefficients in the binomial ex...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |