Home
Class 11
MATHS
If C0,C1,C2,.......,Cn denote the binomi...

If `C_0,C_1,C_2,.......,C_n` denote the binomial coefficients in the expansion of `(1+1)^n,` then `sum_(0ler) sum_(< s le n) (C_r+C_s)`

A

`2^(n)`

B

`2^(n-1)`

C

`n.2^(n)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation of the binomial coefficients \( C_r + C_s \) where \( r \) and \( s \) range from \( 0 \) to \( n \). ### Step-by-Step Solution: 1. **Understanding the Double Summation**: The expression we need to evaluate is: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s) \] This can be split into two separate summations: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r + \sum_{r=0}^{n} \sum_{s=0}^{n} C_s \] 2. **Evaluating Each Summation**: The first summation can be simplified: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r = \sum_{r=0}^{n} C_r \cdot (n + 1) \] because for each \( C_r \), there are \( n + 1 \) terms of \( C_s \) (from \( s = 0 \) to \( s = n \)). Thus, we have: \[ \sum_{r=0}^{n} C_r = 2^n \quad \text{(from the binomial theorem)} \] Therefore: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r = (n + 1) \cdot 2^n \] 3. **Evaluating the Second Summation**: Similarly, for the second summation: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_s = \sum_{s=0}^{n} C_s \cdot (n + 1) = (n + 1) \cdot 2^n \] 4. **Combining the Results**: Now, we combine both results: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s) = (n + 1) \cdot 2^n + (n + 1) \cdot 2^n = 2(n + 1) \cdot 2^n \] 5. **Final Answer**: Thus, the final result simplifies to: \[ = (n + 1) \cdot 2^{n + 1} \] ### Conclusion: The value of the double summation \( \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s) \) is: \[ (n + 1) \cdot 2^{n + 1} \]

To solve the problem, we need to evaluate the double summation of the binomial coefficients \( C_r + C_s \) where \( r \) and \( s \) range from \( 0 \) to \( n \). ### Step-by-Step Solution: 1. **Understanding the Double Summation**: The expression we need to evaluate is: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If C0,C1,C2,.......,Cn denote the binomial coefficients in the expansi...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |