Home
Class 11
MATHS
If C(0), C(1), C(2), …, C(n) denote t...

If `C_(0), C_(1), C_(2), …, C_(n)` denote the binomial
coefficients in the expansion of `(1 + x)^(n) ` , then `sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s)`=.

A

`2^(2n)-""^(2n)C_(n)`

B

`""^(2n)C_(n)-2^(2n)`

C

`(1)/(2)(2""^(2n)-""^(2n)C_(n))`

D

`(1)/(2)(2""^(2n)+""^(2n)C_(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sum_{r=0}^{n} \sum_{s=r+1}^{n} C_r C_s \] where \( C_k \) represents the binomial coefficients from the expansion of \( (1 + x)^n \). ### Step 1: Understanding the Double Summation The double summation can be interpreted as summing the products of binomial coefficients \( C_r \) and \( C_s \) for all pairs \( (r, s) \) such that \( 0 \leq r < s \leq n \). ### Step 2: Rewriting the Double Summation We can express the double summation as follows: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s - \sum_{r=0}^{n} C_r C_r \] The first term sums over all pairs \( (r, s) \), while the second term subtracts the cases where \( r = s \) (i.e., the diagonal elements). ### Step 3: Evaluating the First Term The first term can be simplified using the binomial theorem: \[ \sum_{r=0}^{n} C_r = (1 + 1)^n = 2^n \] Thus, \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s = \left( \sum_{r=0}^{n} C_r \right)^2 = (2^n)^2 = 2^{2n} \] ### Step 4: Evaluating the Second Term The second term involves the sum of squares of the binomial coefficients: \[ \sum_{r=0}^{n} C_r^2 = C_{2n}^n \] This is a known result from combinatorics, which states that the sum of the squares of the binomial coefficients is equal to the central binomial coefficient of \( 2n \). ### Step 5: Putting It All Together Now we can substitute back into our expression: \[ \sum_{r=0}^{n} \sum_{s=r+1}^{n} C_r C_s = \frac{1}{2} \left( \sum_{r=0}^{n} \sum_{s=0}^{n} C_r C_s - \sum_{r=0}^{n} C_r^2 \right) \] Substituting the values we found: \[ \sum_{r=0}^{n} \sum_{s=r+1}^{n} C_r C_s = \frac{1}{2} \left( 2^{2n} - C_{2n}^n \right) \] ### Final Answer Thus, the required summation is: \[ \sum_{r=0}^{n} \sum_{s=r+1}^{n} C_r C_s = \frac{1}{2} \left( 2^{2n} - C_{2n}^n \right) \]

To solve the problem, we need to find the value of the expression: \[ \sum_{r=0}^{n} \sum_{s=r+1}^{n} C_r C_s \] where \( C_k \) represents the binomial coefficients from the expansion of \( (1 + x)^n \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If C(0), C(1), C(2), …, C(n) denote the binomial coefficients in...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |