Home
Class 11
MATHS
( 1 + x + x^(2))^(n) = a(0) + a(1) x + a...

`( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n)`, then `a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = ` .

A

3^(n)

B

1

C

`a_(n-r)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( a_0 + a_1 + a_2 + a_3 - a_4 + \ldots + a_{2n} \) for the expansion of \( (1 + x + x^2)^n \). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression \( (1 + x + x^2)^n \) can be expanded using the multinomial theorem. The coefficients \( a_k \) represent the coefficients of \( x^k \) in the expansion. 2. **Finding the Sum of Coefficients**: To find \( a_0 + a_1 + a_2 + a_3 + \ldots + a_{2n} \), we can substitute \( x = 1 \) into the expression: \[ (1 + 1 + 1^2)^n = (1 + 1 + 1)^n = 3^n \] Therefore, we have: \[ a_0 + a_1 + a_2 + a_3 + \ldots + a_{2n} = 3^n \] 3. **Considering the Alternating Sum**: Next, we need to evaluate the expression \( a_0 + a_1 + a_2 + a_3 - a_4 + a_5 - a_6 + \ldots + a_{2n} \). This can be achieved by substituting \( x = 1 \) and \( x = -1 \) into the original expression. - For \( x = -1 \): \[ (1 - 1 + (-1)^2)^n = (1 - 1 + 1)^n = 1^n = 1 \] This gives us: \[ a_0 - a_1 + a_2 - a_3 + a_4 - a_5 + \ldots + (-1)^{2n} a_{2n} = 1 \] 4. **Combining the Results**: Now we have two equations: - \( S_1 = a_0 + a_1 + a_2 + a_3 + \ldots + a_{2n} = 3^n \) - \( S_2 = a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^{2n} a_{2n} = 1 \) We can add these two equations: \[ S_1 + S_2 = (a_0 + a_1 + a_2 + a_3 + \ldots + a_{2n}) + (a_0 - a_1 + a_2 - a_3 + \ldots + a_{2n}) = 2(a_0 + a_2 + a_4 + \ldots) \] This simplifies to: \[ 3^n + 1 = 2(a_0 + a_2 + a_4 + \ldots) \] Now, subtract \( S_2 \) from \( S_1 \): \[ S_1 - S_2 = (a_0 + a_1 + a_2 + a_3 + \ldots + a_{2n}) - (a_0 - a_1 + a_2 - a_3 + \ldots + a_{2n}) = 2(a_1 + a_3 + a_5 + \ldots) \] This simplifies to: \[ 3^n - 1 = 2(a_1 + a_3 + a_5 + \ldots) \] 5. **Final Calculation**: Now we can express the desired sum: \[ a_0 + a_1 + a_2 + a_3 - a_4 + a_5 - a_6 + \ldots + a_{2n} = S_1 + S_2 = 3^n + 1 \] ### Final Answer: Thus, the value of \( a_0 + a_1 + a_2 + a_3 - a_4 + \ldots + a_{2n} \) is: \[ \boxed{3^n + 1} \]

To solve the problem, we need to evaluate the expression \( a_0 + a_1 + a_2 + a_3 - a_4 + \ldots + a_{2n} \) for the expansion of \( (1 + x + x^2)^n \). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression \( (1 + x + x^2)^n \) can be expanded using the multinomial theorem. The coefficients \( a_k \) represent the coefficients of \( x^k \) in the expansion. 2. **Finding the Sum of Coefficients**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)-a_(1)++a_(2)-a_(3)+……+a_(20)=4^(10)

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)+a_(1)+a_(2)+……+a_(20)=2^(10)

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. ( 1 + x + x^(2))^(n) = a(0) + a(1) x + a(2) x^(2) + …+ a(2n) x^(2n), ...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |