Home
Class 11
MATHS
If x be very small compered with such th...

If x be very small compered with such that
`(sqrt(1+ x)+root(3)((1 - x)^(2)))/(sqrt(1+x)+(1+x))`~~a bx`, then the values of a and b are

A

`A= 1, b = (5)/(6)`

B

`a = 1, b = - (5)/(6)`

C

`a = 1, b = (5)/(6)`

D

`a = 1, b = - (5 )/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to simplify the expression: \[ \frac{\sqrt{1+x} + 3\sqrt[3]{(1-x)^2}}{\sqrt{1+x} + (1+x)} \] and express it in the form \( a - bx \) where \( x \) is very small. ### Step-by-step Solution: 1. **Expand the terms using Binomial Theorem:** - For \( \sqrt{1+x} \), we can use the binomial expansion: \[ \sqrt{1+x} \approx 1 + \frac{1}{2}x \quad \text{(for small } x\text{)} \] - For \( \sqrt[3]{(1-x)^2} \), we first expand \( (1-x)^2 \): \[ (1-x)^2 = 1 - 2x + x^2 \] Now, apply the binomial expansion: \[ \sqrt[3]{1 - 2x + x^2} \approx 1 - \frac{2}{3}x \quad \text{(neglecting higher order terms)} \] 2. **Substituting back into the expression:** - Now substitute these expansions into the original expression: \[ \sqrt{1+x} + 3\sqrt[3]{(1-x)^2} \approx \left(1 + \frac{1}{2}x\right) + 3\left(1 - \frac{2}{3}x\right) \] Simplifying this gives: \[ 1 + \frac{1}{2}x + 3 - 2x = 4 - \frac{3}{2}x \] 3. **Expand the denominator:** - For the denominator \( \sqrt{1+x} + (1+x) \): \[ \sqrt{1+x} + (1+x) \approx \left(1 + \frac{1}{2}x\right) + (1+x) = 2 + \frac{3}{2}x \] 4. **Combine the numerator and denominator:** - Now we have: \[ \frac{4 - \frac{3}{2}x}{2 + \frac{3}{2}x} \] 5. **Simplify the fraction:** - To simplify, we can multiply the numerator and denominator by \( \frac{1}{2} \): \[ \frac{2 - \frac{3}{4}x}{1 + \frac{3}{4}x} \] - Now, apply the binomial expansion to the denominator: \[ \frac{1}{1 + \frac{3}{4}x} \approx 1 - \frac{3}{4}x \quad \text{(for small } x\text{)} \] - Thus: \[ \frac{2 - \frac{3}{4}x}{1 + \frac{3}{4}x} \approx (2 - \frac{3}{4}x)(1 - \frac{3}{4}x) = 2 - \frac{3}{4}x - \frac{3}{2}x + O(x^2) \] - This simplifies to: \[ 2 - \frac{9}{4}x \] 6. **Final expression:** - We need to express this in the form \( a - bx \): \[ 2 - \frac{9}{4}x \approx a - bx \] - Thus, we have: \[ a = 2 \quad \text{and} \quad b = \frac{9}{4} \] ### Conclusion: The values of \( a \) and \( b \) are: \[ a = 2, \quad b = \frac{9}{4} \]

To solve the given problem, we need to simplify the expression: \[ \frac{\sqrt{1+x} + 3\sqrt[3]{(1-x)^2}}{\sqrt{1+x} + (1+x)} \] and express it in the form \( a - bx \) where \( x \) is very small. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|100 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

int(1+sqrt(x))/(1+root(3)(x))dx

If int_0^1 (1+x+sqrt(x+x^2))/(sqrt(x)+sqrt(1+x))dx=1/a(2^a-1) , then the value of 4a^2 is …

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

lim_(xrarr0) (sqrt(1+x^2)- sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Chapter Test
  1. If x be very small compered with such that (sqrt(1+ x)+root(3)((1 -...

    Text Solution

    |

  2. The term independent of x in (1+x)^(m)(1+1/x)^(n) is :

    Text Solution

    |

  3. The expression [x+(x^(3)-1)^((1)/(2))]^(5)+[x-(x^(3)-1)^((1)/(2))]^(...

    Text Solution

    |

  4. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  5. If (1 + x)^(n)= C(0) + C(1) x C(2) x^(2) + …+ C(n) x^(n) , prove th...

    Text Solution

    |

  6. Find the numerically grates term in the expansion of 3-5x^(15)w h e nx...

    Text Solution

    |

  7. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  8. Find the position of the term independent of x in the expansion of (sq...

    Text Solution

    |

  9. If the coefficients of x^(7) and x^(8) in the expansion of (2+x/3)^(n)...

    Text Solution

    |

  10. If the rth term in the expansion of (x/3-2/x^(2))^(10 contains x^(4), ...

    Text Solution

    |

  11. If the third in the expansion of [x + x^(logx)]^(6) is 10^(6) , th...

    Text Solution

    |

  12. the value of x , for which the 6th term in the expansions of[2^log2sqr...

    Text Solution

    |

  13. If the coefficients of (p+1)th and (P+3)th terms in the expansion of (...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The value of C(0)+3C(1)+5C(2)+7C(3)+….+(2n+1)C(n) is equal to :

    Text Solution

    |

  16. Find the following sum : (1)/(n!) + (1)/(2!(n-2)!) + (1)/(4!(n-4)!)+...

    Text Solution

    |

  17. The coefficient of x^(n) y^(n) in the expansion of [(1 + x)(1+y) (x...

    Text Solution

    |

  18. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  19. Find the ratio of the coefficient of x^(15) to the term independent of...

    Text Solution

    |

  20. Find the number of terms in the expansion of (x+y+z)^(n).

    Text Solution

    |

  21. In the expansion of (1+x)^30 the sum of the coefficients of odd powers...

    Text Solution

    |