Home
Class 11
MATHS
If C(r) be the coefficients of x^(r) in...

If `C_(r)` be the coefficients of `x^(r)` in `(1 + x)^(n) `, then the value
of `sum_(r=0)^(n) (r + 1)^(2) C_(r) `, is

A

`(n +1) (n +4) 2^(n-2)`

B

`( n+1)(n +4)2^(n-1)`

C

`( n+ 1)^(2) 2^(n-2)`

D

`(n +4)^(2) 2^(n-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the summation: \[ S_n = \sum_{r=0}^{n} (r + 1)^2 C_r \] where \( C_r \) is the coefficient of \( x^r \) in the expansion of \( (1 + x)^n \), which is given by \( C_r = \binom{n}{r} \). ### Step-by-Step Solution: 1. **Expand the term \((r + 1)^2\)**: \[ (r + 1)^2 = r^2 + 2r + 1 \] Therefore, we can rewrite the summation as: \[ S_n = \sum_{r=0}^{n} (r^2 + 2r + 1) C_r = \sum_{r=0}^{n} r^2 C_r + 2 \sum_{r=0}^{n} r C_r + \sum_{r=0}^{n} C_r \] 2. **Evaluate \(\sum_{r=0}^{n} C_r\)**: By the binomial theorem, we know: \[ \sum_{r=0}^{n} C_r = (1 + 1)^n = 2^n \] 3. **Evaluate \(\sum_{r=0}^{n} r C_r\)**: We can express \( r C_r \) as \( n C_{r-1} \): \[ \sum_{r=0}^{n} r C_r = n \sum_{r=1}^{n} C_{r-1} = n \sum_{s=0}^{n-1} C_s = n \cdot 2^{n-1} \] 4. **Evaluate \(\sum_{r=0}^{n} r^2 C_r\)**: We use the identity: \[ \sum_{r=0}^{n} r^2 C_r = n(n-1) \sum_{r=2}^{n} C_{r-2} + n \sum_{r=1}^{n} C_{r-1} \] This simplifies to: \[ \sum_{r=0}^{n} r^2 C_r = n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1} \] 5. **Combine all parts**: Now substituting back into \( S_n \): \[ S_n = \left( n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1} \right) + 2(n \cdot 2^{n-1}) + 2^n \] Simplifying this: \[ S_n = n(n-1) \cdot 2^{n-2} + 3n \cdot 2^{n-1} + 2^n \] 6. **Factor out \( 2^{n-2} \)**: \[ S_n = 2^{n-2} \left( n(n-1) + 6n + 4 \right) = 2^{n-2} (n^2 + 5n + 4) \] 7. **Final Result**: The final answer can be factored: \[ S_n = 2^{n-2} (n + 4)(n + 1) \] ### Conclusion: Thus, the value of the summation \( S_n \) is: \[ S_n = 2^{n-2} (n + 4)(n + 1) \]

To solve the problem, we need to find the value of the summation: \[ S_n = \sum_{r=0}^{n} (r + 1)^2 C_r \] where \( C_r \) is the coefficient of \( x^r \) in the expansion of \( (1 + x)^n \), which is given by \( C_r = \binom{n}{r} \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. In Example 28, the number of ways of choosing A and B such that B i...

    Text Solution

    |

  2. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  3. If C(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value ...

    Text Solution

    |

  4. If n is an odd natural number , prove that sum(r=0)^(n) ((-1)^(r))...

    Text Solution

    |

  5. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  6. If an=sum(r=0)^n1/(^n Cr) , then sum(r=0)^n r/(^n Cr) equals (n-1)an b...

    Text Solution

    |

  7. The value of 1^2.C1 + 3^2.C3 + 5^2.C5 + ... is

    Text Solution

    |

  8. The sum of the series sum(r=0) ^(n) ""^(2n)C(r), is

    Text Solution

    |

  9. The value of (sumsum)(0leilejlen) (""^(n)C(i) + ""^(n)C(j)) is equal t...

    Text Solution

    |

  10. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  11. The value of sum(r=0)^(15)r^(2)((""^(15)C(r))/(""^(15)C(r-1))) is equa...

    Text Solution

    |

  12. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  13. If sum(i=1)^(n-1) ((""^(n)C(i-1))/(""^(n)C(i)+""^(n)C(i-1)))^(3) = (3...

    Text Solution

    |

  14. If (1+ x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3)x^(3) + ...+ C(n) x^(...

    Text Solution

    |

  15. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  16. 7^(103) when divided by 25 leaves the remainder .

    Text Solution

    |

  17. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  18. If (x^(2) + x)/(1-x) = a(1) x + a(2) x^(2) + ... to infty , |x| lt 1,...

    Text Solution

    |

  19. The sum of the series ""^(4)C(0) + ""^(5)C(1) x + ""^(6)C(2) x^(2)...

    Text Solution

    |

  20. the sum of the series ""^(2)C(0) + ""^(3)C(1) x^2 + ""^(4)C(2) x^(4)...

    Text Solution

    |