Home
Class 11
MATHS
The value of 1^2.C1 + 3^2.C3 + 5^2.C5 +...

The value of `1^2.C_1 ``+ 3^2.C_3 +`` 5^2.C_5 + ...` is

A

`n(n -1)2^(n-2) + n.2^(n-1)`

B

`n(n -1)2^(n-2)`

C

`n(n+1). 2 ^(n-3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(1^2 \cdot C_1 + 3^2 \cdot C_3 + 5^2 \cdot C_5 + \ldots\), we can express the series in a more manageable form and use properties of binomial coefficients. ### Step-by-Step Solution 1. **Identify the Series**: The series can be expressed in summation notation: \[ S = \sum_{r=0}^{n} (2r + 1)^2 \cdot C_r \] where \(C_r\) is the binomial coefficient \(\binom{n}{r}\). 2. **Expand the Square**: We can expand \((2r + 1)^2\): \[ (2r + 1)^2 = 4r^2 + 4r + 1 \] Thus, we can rewrite the series \(S\) as: \[ S = \sum_{r=0}^{n} (4r^2 + 4r + 1) \cdot C_r \] 3. **Distribute the Summation**: We can separate the summation: \[ S = 4 \sum_{r=0}^{n} r^2 C_r + 4 \sum_{r=0}^{n} r C_r + \sum_{r=0}^{n} C_r \] 4. **Evaluate Each Summation**: - The sum \(\sum_{r=0}^{n} C_r = 2^n\) (sum of binomial coefficients). - The sum \(\sum_{r=0}^{n} r C_r = n \cdot 2^{n-1}\) (using the property of binomial coefficients). - The sum \(\sum_{r=0}^{n} r^2 C_r = n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}\) (using the second moment of binomial coefficients). 5. **Combine the Results**: Now substituting these results back into the expression for \(S\): \[ S = 4 \left(n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}\right) + 2^n \] Simplifying this: \[ S = 4n(n-1) \cdot 2^{n-2} + 4n \cdot 2^{n-1} + 2^n \] \[ = 2^{n-2} \left(4n(n-1) + 8n + 4\right) \] \[ = 2^{n-2} \left(4n^2 + 4n + 4\right) \] \[ = 4(n^2 + n + 1) \cdot 2^{n-2} \] 6. **Final Expression**: Thus, the final value of the series is: \[ S = n(n + 1) \cdot 2^{n-3} \]

To solve the problem \(1^2 \cdot C_1 + 3^2 \cdot C_3 + 5^2 \cdot C_5 + \ldots\), we can express the series in a more manageable form and use properties of binomial coefficients. ### Step-by-Step Solution 1. **Identify the Series**: The series can be expressed in summation notation: \[ S = \sum_{r=0}^{n} (2r + 1)^2 \cdot C_r ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

The value of 4{ C_1 +4. C_2 +4^2 C_3 + ... +4^(n-1)} is

With usual notations find the value of 3.C_1 + 5.C_2 + 7.C_3 + ……….+n terms

Find the value of C_0 - [C_1 -2.C_2+ 3.C_3-……..+(-1)^(n-1).n.C_n]

If (1 + x + x^2)^n = (C_0 + C_1x + C_2 x^2 + ............) then the value of C_0 C_1-C_1C_2+C_2C_3.....

A mixture contains 1 mole of helium (C_p = 2.5 R, C_v= 1.5 R. ) and 1 mole of hydrogen (C_p = 3.5 R, C_v = 2.5 R, ) . Calculate the values of C_p , C_v and gamma for the mixture.

A mixture contains 1 mole of helium (c_p = 2.5 R, C_v 1.5 R. ) and 1mole of hydrogen (C_p = 3.5 R, C_v = 2.5 R, ) . Calculate the values of C_p , C_v and gamma for the mixture.

If x=(7+5sqrt(2))^(1/3)-1/((7+5sqrt(2))^(1/3)) , then the value of x^3+3x-14 is equal to 1 b. 0 c. 2 d. 4

Prove that (n-1)^(2) C_(1) + (n-3)^(2) C_(3) + (n-5)^(2) C_(5) . + ….= n (n+1)2^(n-3) , where C_(r) stands for ""^(n)C_(r) .

If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha is a. +-1 b. +-2 c. +-3 d. +-5

Find the value of : a + 2b - 5c when a = 2, b = -3 and c = 1

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  2. If an=sum(r=0)^n1/(^n Cr) , then sum(r=0)^n r/(^n Cr) equals (n-1)an b...

    Text Solution

    |

  3. The value of 1^2.C1 + 3^2.C3 + 5^2.C5 + ... is

    Text Solution

    |

  4. The sum of the series sum(r=0) ^(n) ""^(2n)C(r), is

    Text Solution

    |

  5. The value of (sumsum)(0leilejlen) (""^(n)C(i) + ""^(n)C(j)) is equal t...

    Text Solution

    |

  6. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  7. The value of sum(r=0)^(15)r^(2)((""^(15)C(r))/(""^(15)C(r-1))) is equa...

    Text Solution

    |

  8. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  9. If sum(i=1)^(n-1) ((""^(n)C(i-1))/(""^(n)C(i)+""^(n)C(i-1)))^(3) = (3...

    Text Solution

    |

  10. If (1+ x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3)x^(3) + ...+ C(n) x^(...

    Text Solution

    |

  11. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  12. 7^(103) when divided by 25 leaves the remainder .

    Text Solution

    |

  13. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  14. If (x^(2) + x)/(1-x) = a(1) x + a(2) x^(2) + ... to infty , |x| lt 1,...

    Text Solution

    |

  15. The sum of the series ""^(4)C(0) + ""^(5)C(1) x + ""^(6)C(2) x^(2)...

    Text Solution

    |

  16. the sum of the series ""^(2)C(0) + ""^(3)C(1) x^2 + ""^(4)C(2) x^(4)...

    Text Solution

    |

  17. If Sn=sum(r=0)^n 1/(nCr) and tn=sum(r=0)^n r/(nCr), then tn/Sn=

    Text Solution

    |

  18. If sn=sum(r < s) (1/(nCr)+1/(nCs)) and tn=sum(r < s)(r/(nCr)+s/(nCs)),...

    Text Solution

    |

  19. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  20. If ar is the coefficient of x^r in the expansion of (1+x+x^2)^n, the...

    Text Solution

    |