Home
Class 11
MATHS
The value of sum(r=1)^(10) r. (""^(n)C(r...

The value of `sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1)` is equal to

A

` 5 (2n -9)`

B

`10`n

C

`9 (n-4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ S_n = \sum_{r=1}^{10} r \cdot \frac{nC_r}{nC_{r-1}} \] ### Step 1: Simplify the Binomial Coefficient Ratio We know that: \[ \frac{nC_r}{nC_{r-1}} = \frac{n!}{r!(n-r)!} \cdot \frac{(r-1)!(n-(r-1))!}{n!} = \frac{n - r + 1}{r} \] This means we can rewrite our sum as: \[ S_n = \sum_{r=1}^{10} r \cdot \frac{n - r + 1}{r} \] ### Step 2: Cancel Out \( r \) The \( r \) in the numerator and denominator cancels out: \[ S_n = \sum_{r=1}^{10} (n - r + 1) \] ### Step 3: Rewrite the Summation Now we can rewrite the summation: \[ S_n = \sum_{r=1}^{10} (n + 1 - r) \] ### Step 4: Split the Summation We can split the summation into two parts: \[ S_n = \sum_{r=1}^{10} (n + 1) - \sum_{r=1}^{10} r \] ### Step 5: Calculate Each Part 1. The first part is simply: \[ \sum_{r=1}^{10} (n + 1) = 10(n + 1) \] 2. The second part is the sum of the first 10 natural numbers: \[ \sum_{r=1}^{10} r = \frac{10 \cdot (10 + 1)}{2} = 55 \] ### Step 6: Combine the Results Now we can combine the results: \[ S_n = 10(n + 1) - 55 \] ### Step 7: Simplify the Expression Simplifying gives us: \[ S_n = 10n + 10 - 55 = 10n - 45 \] ### Step 8: Factor the Expression We can factor this expression: \[ S_n = 5(2n - 9) \] Thus, the final answer is: \[ S_n = 5(2n - 9) \] ### Final Answer The value of \( S_n \) is \( 5(2n - 9) \). ---

To solve the problem, we need to evaluate the summation: \[ S_n = \sum_{r=1}^{10} r \cdot \frac{nC_r}{nC_{r-1}} \] ### Step 1: Simplify the Binomial Coefficient Ratio We know that: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r = 1)^15 r^2 ((""^15C_r)/(""^15C_(r - 1)) ) of is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. If sum(i=1)^(n-1) ((""^(n)C(i-1))/(""^(n)C(i)+""^(n)C(i-1)))^(3) = (3...

    Text Solution

    |

  2. If (1+ x)^(n) = C(0) + C(1) x + C(2) x^(2) + C(3)x^(3) + ...+ C(n) x^(...

    Text Solution

    |

  3. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  4. 7^(103) when divided by 25 leaves the remainder .

    Text Solution

    |

  5. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  6. If (x^(2) + x)/(1-x) = a(1) x + a(2) x^(2) + ... to infty , |x| lt 1,...

    Text Solution

    |

  7. The sum of the series ""^(4)C(0) + ""^(5)C(1) x + ""^(6)C(2) x^(2)...

    Text Solution

    |

  8. the sum of the series ""^(2)C(0) + ""^(3)C(1) x^2 + ""^(4)C(2) x^(4)...

    Text Solution

    |

  9. If Sn=sum(r=0)^n 1/(nCr) and tn=sum(r=0)^n r/(nCr), then tn/Sn=

    Text Solution

    |

  10. If sn=sum(r < s) (1/(nCr)+1/(nCs)) and tn=sum(r < s)(r/(nCr)+s/(nCs)),...

    Text Solution

    |

  11. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  12. If ar is the coefficient of x^r in the expansion of (1+x+x^2)^n, the...

    Text Solution

    |

  13. If n be a positive integer and Pn denotes the product of the binomial ...

    Text Solution

    |

  14. Prove that in the expansion of (1+x)^(n) (1+y)^(n) (1+z)^(n), the sum ...

    Text Solution

    |

  15. If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a0+a1x t...

    Text Solution

    |

  16. If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r...

    Text Solution

    |

  17. the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2), is

    Text Solution

    |

  18. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  19. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  20. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |