Home
Class 11
MATHS
The sum of the series ""^(4)C(0) + "...

The sum of the series
`""^(4)C_(0) + ""^(5)C_(1) x + ""^(6)C_(2) x^(2)+""^(7)C_(3)x^(3) +... ` to `infty`, is

A

`(1)/((1 - X)^(5)`

B

`(1)/( 1 - X)^(5)`

C

`(1 + X)^(-5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ \sum_{n=0}^{\infty} \binom{n+4}{4} x^n \] we can use the binomial theorem and properties of generating functions. The series can be rewritten using the binomial coefficient notation. ### Step 1: Identify the General Term The general term of the series is given by: \[ \binom{n+4}{4} x^n \] ### Step 2: Recognize the Binomial Series From the binomial theorem, we know that: \[ (1 - x)^{-k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n \] For our case, we can set \(k = 5\). Thus, we have: \[ (1 - x)^{-5} = \sum_{n=0}^{\infty} \binom{n+4}{4} x^n \] ### Step 3: Write the Sum of the Series Now, we can express the sum of the series as: \[ \sum_{n=0}^{\infty} \binom{n+4}{4} x^n = (1 - x)^{-5} \] ### Step 4: Final Expression Thus, the sum of the series is: \[ \frac{1}{(1 - x)^5} \] ### Conclusion The final answer for the sum of the series \[ \sum_{n=0}^{\infty} \binom{n+4}{4} x^n = \frac{1}{(1 - x)^5} \]

To find the sum of the series \[ \sum_{n=0}^{\infty} \binom{n+4}{4} x^n \] we can use the binomial theorem and properties of generating functions. The series can be rewritten using the binomial coefficient notation. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

the sum of the series ""^(2)C_(0) + ""^(3)C_(1) x^2 + ""^(4)C_(2) x^(4)+""^(5)C_(3)x^(6) +... to infty , is

The sum of the series ""^(3)C_(0)- ""^(4)C_(1) . (1)/(2) + ""^(5)C_(2)((1)/(2))^(2) - ""^(6)C_(3)((1)/(2))^(3) + ... to infty , is

1 + ""^2C_1x + ""^3C_2 x^2+ ""^4C_3 x^3 + ….. to oo terms can be summed up if

The sum of the series (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3) ….. To infty is

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

Solve the equation ""^(11)C_(1) x^(10) - ""^(11)C_(3) x^(8) + ""^(11)C_(5) x^(6) - ""^(11)C_(7) x^(4) + ""^(11)C_(9) x^(2) - ""^(11)C_(11) = 0

The sum of the series x+(2^(3))/(2!)x^(2)+(3^(3))/(3!)x^(3)+(4^(3))/(4!)x^(4) +……..to infty is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , find the sum of the series (C_(0))/(2) -(C_(1))/(6) + (C_(2))/(10) + (C_(3))/(14) -...+ (-1)^(n) (C_(n))/(4n+2) .

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  2. If (x^(2) + x)/(1-x) = a(1) x + a(2) x^(2) + ... to infty , |x| lt 1,...

    Text Solution

    |

  3. The sum of the series ""^(4)C(0) + ""^(5)C(1) x + ""^(6)C(2) x^(2)...

    Text Solution

    |

  4. the sum of the series ""^(2)C(0) + ""^(3)C(1) x^2 + ""^(4)C(2) x^(4)...

    Text Solution

    |

  5. If Sn=sum(r=0)^n 1/(nCr) and tn=sum(r=0)^n r/(nCr), then tn/Sn=

    Text Solution

    |

  6. If sn=sum(r < s) (1/(nCr)+1/(nCs)) and tn=sum(r < s)(r/(nCr)+s/(nCs)),...

    Text Solution

    |

  7. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  8. If ar is the coefficient of x^r in the expansion of (1+x+x^2)^n, the...

    Text Solution

    |

  9. If n be a positive integer and Pn denotes the product of the binomial ...

    Text Solution

    |

  10. Prove that in the expansion of (1+x)^(n) (1+y)^(n) (1+z)^(n), the sum ...

    Text Solution

    |

  11. If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a0+a1x t...

    Text Solution

    |

  12. If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r...

    Text Solution

    |

  13. the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2), is

    Text Solution

    |

  14. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  15. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  16. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |

  17. sum(r=1)^(n) {sum(r1=0)^(r-1) ""^(n)C(r) ""^(r)C(r(1)) 2^(r1)} is equ...

    Text Solution

    |

  18. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  19. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  20. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |