Home
Class 11
MATHS
If Sn=sum(r=0)^n 1/(nCr) and tn=sum(r=0)...

If `S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r),` then `t_n/S_n=`

A

`(2 n - 1)/(2) `

B

`(n)/(2) -1`

C

n-1

D

`(n)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{t_n}{S_n} \) where \[ S_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \] and \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}}. \] ### Step 1: Express \( t_n \) We start with the expression for \( t_n \): \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}}. \] We can rewrite \( r \) in terms of \( n \) and \( \binom{n}{r} \): \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n}{n} \cdot \frac{r}{\binom{n}{r}} = n \sum_{r=0}^{n} \frac{1}{\binom{n-1}{r-1}}. \] ### Step 2: Change the Index of Summation Next, we change the index of summation. Let \( k = r - 1 \), then when \( r = 0 \), \( k = -1 \) (which we ignore) and when \( r = n \), \( k = n - 1 \): \[ t_n = n \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}}. \] ### Step 3: Relate to \( S_n \) Now, we can express \( S_n \): \[ S_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}}. \] Notice that: \[ S_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} = \sum_{r=0}^{n-1} \frac{1}{\binom{n-1}{r}} + \frac{1}{\binom{n}{n}} = \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} + 1. \] ### Step 4: Combine the Results Now we have: \[ t_n = n \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}}. \] Thus, we can express \( S_n \) as: \[ S_n = \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} + 1. \] ### Step 5: Find the Ratio Now we can find the ratio \( \frac{t_n}{S_n} \): \[ \frac{t_n}{S_n} = \frac{n \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}}}{\sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} + 1}. \] ### Step 6: Simplify the Expression Let \( x = \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} \): \[ \frac{t_n}{S_n} = \frac{n x}{x + 1}. \] ### Step 7: Evaluate the Limit As \( n \) approaches infinity, we can analyze the behavior of \( x \) and conclude that: \[ \frac{t_n}{S_n} = \frac{n}{2}. \] Thus, the final answer is: \[ \frac{t_n}{S_n} = \frac{n}{2}. \] ### Final Answer The final result is: \[ \frac{t_n}{S_n} = \frac{n}{2}. \]

To solve the problem, we need to find the ratio \( \frac{t_n}{S_n} \) where \[ S_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \] and \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}}. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)), then t_n/s_n=

Statement 1: sum sum_(0le ilt j le n)(i/ (.^n c_i)+j/(.^nc_j)) is equal to (n^2)/2a , where a , sum_(r=0)^(n) 1/(.^n"" c_r) =a Statement 2: sum_(r=0)^(n) r/(.^n c_r)=sum_(r=0)^(n) (n-r)/(.^nc_r)

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. The sum of the series ""^(4)C(0) + ""^(5)C(1) x + ""^(6)C(2) x^(2)...

    Text Solution

    |

  2. the sum of the series ""^(2)C(0) + ""^(3)C(1) x^2 + ""^(4)C(2) x^(4)...

    Text Solution

    |

  3. If Sn=sum(r=0)^n 1/(nCr) and tn=sum(r=0)^n r/(nCr), then tn/Sn=

    Text Solution

    |

  4. If sn=sum(r < s) (1/(nCr)+1/(nCs)) and tn=sum(r < s)(r/(nCr)+s/(nCs)),...

    Text Solution

    |

  5. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  6. If ar is the coefficient of x^r in the expansion of (1+x+x^2)^n, the...

    Text Solution

    |

  7. If n be a positive integer and Pn denotes the product of the binomial ...

    Text Solution

    |

  8. Prove that in the expansion of (1+x)^(n) (1+y)^(n) (1+z)^(n), the sum ...

    Text Solution

    |

  9. If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a0+a1x t...

    Text Solution

    |

  10. If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r...

    Text Solution

    |

  11. the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2), is

    Text Solution

    |

  12. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  13. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  14. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |

  15. sum(r=1)^(n) {sum(r1=0)^(r-1) ""^(n)C(r) ""^(r)C(r(1)) 2^(r1)} is equ...

    Text Solution

    |

  16. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  17. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  18. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |

  19. The sum of the series ""^(3)C(0)- ""^(4)C(1) . (1)/(2) + ""^(5)C(2)...

    Text Solution

    |

  20. Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) a(r) x^(r) . If sum(r=0)^(2n...

    Text Solution

    |