Home
Class 11
MATHS
If sn=sum(r < s) (1/(nCr)+1/(nCs)) and t...

If `s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)),` then `t_n/s_n=`

A

n-1

B

n+1

C

`(n)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the ratio \( \frac{t_n}{s_n} \) where: \[ s_n = \sum_{r=0}^{s-1} \left( \frac{1}{\binom{n}{r}} + \frac{1}{\binom{n}{s}} \right) \] \[ t_n = \sum_{r=0}^{s-1} \left( \frac{r}{\binom{n}{r}} + \frac{s}{\binom{n}{s}} \right) \] ### Step 1: Compute \( s_n \) 1. **Substitute \( s = n \)** in \( s_n \): \[ s_n = \sum_{r=0}^{n-1} \left( \frac{1}{\binom{n}{r}} + \frac{1}{\binom{n}{n}} \right) \] Since \( \binom{n}{n} = 1 \), we have: \[ s_n = \sum_{r=0}^{n-1} \frac{1}{\binom{n}{r}} + 1 \] 2. **Recognize that \( \sum_{r=0}^{n-1} \frac{1}{\binom{n}{r}} \)** can be simplified: \[ s_n = \sum_{r=0}^{n-1} \frac{1}{\binom{n}{r}} + 1 = n \cdot \frac{1}{\binom{n}{n}} = n \] Thus, we can write: \[ s_n = n + 1 \] ### Step 2: Compute \( t_n \) 1. **Substitute \( s = n \)** in \( t_n \): \[ t_n = \sum_{r=0}^{n-1} \left( \frac{r}{\binom{n}{r}} + \frac{n}{\binom{n}{n}} \right) \] Again, since \( \binom{n}{n} = 1 \): \[ t_n = \sum_{r=0}^{n-1} \frac{r}{\binom{n}{r}} + n \] 2. **Recognize that \( \sum_{r=0}^{n-1} \frac{r}{\binom{n}{r}} \)** can also be simplified: \[ t_n = n \cdot \sum_{r=0}^{n-1} \frac{1}{\binom{n-1}{r-1}} + n \] This is equivalent to: \[ t_n = n \cdot (s_n - 1) + n \] Thus, we can write: \[ t_n = n \cdot n + n = n^2 + n \] ### Step 3: Compute the ratio \( \frac{t_n}{s_n} \) Now we can compute the ratio: \[ \frac{t_n}{s_n} = \frac{n^2 + n}{n + 1} \] ### Step 4: Simplify the ratio 1. **Factor out \( n \)** from the numerator: \[ \frac{n(n + 1)}{n + 1} \] Cancel \( n + 1 \) from the numerator and denominator: \[ \frac{t_n}{s_n} = n \] ### Final Result Thus, the final answer is: \[ \frac{t_n}{s_n} = n \]

To solve the problem, we need to compute the ratio \( \frac{t_n}{s_n} \) where: \[ s_n = \sum_{r=0}^{s-1} \left( \frac{1}{\binom{n}{r}} + \frac{1}{\binom{n}{s}} \right) \] \[ t_n = \sum_{r=0}^{s-1} \left( \frac{r}{\binom{n}{r}} + \frac{s}{\binom{n}{s}} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

Let S_n=sum_(r=0)^oo 1/n^r and sum_(n=1)^k (n-1)S_n = 5050 then k= (A) 50 (B) 505 (C) 100 (D) 55

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), then AA n in {1,2,3...}:

If t_(r)=(1^(2)+2^(2)+3^(2)+….+r^(2))/(1^(3)+2^(3)+3^(3)+…+r^(3)), S_(n)=sum_(r=1)^(n)(-1)^(r)t_(r) , then lim_(nrarroo)((1)/(3-S_(n)))=

Let S_(n)=sum_(r=1)^(n)((r^(4)_r^(3)n+r^(2)n^(2)+2n^(4))/(n^(5))) and T_(n)=sum_(r=0)^(n-1)((r^(4)+r^(3)n^(2)+2n^(4))/(n^(5))),n=1,2,3, ……….then

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. the sum of the series ""^(2)C(0) + ""^(3)C(1) x^2 + ""^(4)C(2) x^(4)...

    Text Solution

    |

  2. If Sn=sum(r=0)^n 1/(nCr) and tn=sum(r=0)^n r/(nCr), then tn/Sn=

    Text Solution

    |

  3. If sn=sum(r < s) (1/(nCr)+1/(nCs)) and tn=sum(r < s)(r/(nCr)+s/(nCs)),...

    Text Solution

    |

  4. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  5. If ar is the coefficient of x^r in the expansion of (1+x+x^2)^n, the...

    Text Solution

    |

  6. If n be a positive integer and Pn denotes the product of the binomial ...

    Text Solution

    |

  7. Prove that in the expansion of (1+x)^(n) (1+y)^(n) (1+z)^(n), the sum ...

    Text Solution

    |

  8. If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a0+a1x t...

    Text Solution

    |

  9. If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r...

    Text Solution

    |

  10. the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2), is

    Text Solution

    |

  11. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  12. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  13. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |

  14. sum(r=1)^(n) {sum(r1=0)^(r-1) ""^(n)C(r) ""^(r)C(r(1)) 2^(r1)} is equ...

    Text Solution

    |

  15. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  16. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  17. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |

  18. The sum of the series ""^(3)C(0)- ""^(4)C(1) . (1)/(2) + ""^(5)C(2)...

    Text Solution

    |

  19. Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) a(r) x^(r) . If sum(r=0)^(2n...

    Text Solution

    |

  20. If binomial coeffients of three consecutive terms of (1 + x )^(n) ar...

    Text Solution

    |