Home
Class 11
MATHS
If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-...

If `1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a_0+a_1x` then find the possible value of `ndot`

A

11

B

9

C

10

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the expression and simplify it to find the possible value of \( n \). ### Step 1: Rewrite the given expression The given expression is: \[ \frac{1}{\sqrt{4x+1}} \left( \left( \frac{1+\sqrt{4x+1}}{2} \right)^n - \left( \frac{1-\sqrt{4x+1}}{2} \right)^n \right) = a_0 + a_1 x \] We can simplify the left-hand side. ### Step 2: Factor out common terms We can factor out \( \frac{1}{2^n} \) from both terms in the parentheses: \[ = \frac{1}{\sqrt{4x+1}} \cdot \frac{1}{2^n} \left( (1+\sqrt{4x+1})^n - (1-\sqrt{4x+1})^n \right) \] ### Step 3: Use the Binomial Theorem Using the Binomial Theorem, we can expand both terms: \[ (1+\sqrt{4x+1})^n = \sum_{k=0}^{n} \binom{n}{k} (4x+1)^{k/2} \] \[ (1-\sqrt{4x+1})^n = \sum_{k=0}^{n} \binom{n}{k} (-1)^k (4x+1)^{k/2} \] ### Step 4: Combine the expansions Now, subtract the two expansions: \[ (1+\sqrt{4x+1})^n - (1-\sqrt{4x+1})^n = 2 \sum_{k \text{ odd}} \binom{n}{k} (4x+1)^{k/2} \] This means we only consider odd \( k \). ### Step 5: Substitute back into the expression Substituting back into our expression gives: \[ \frac{1}{\sqrt{4x+1}} \cdot \frac{1}{2^n} \cdot 2 \sum_{k \text{ odd}} \binom{n}{k} (4x+1)^{k/2} \] This simplifies to: \[ \frac{1}{2^{n-1}} \sum_{k \text{ odd}} \binom{n}{k} (4x+1)^{k/2 - 1/2} \] ### Step 6: Identify the powers of \( x \) The term \( (4x+1)^{k/2 - 1/2} \) can be expressed in terms of \( x \): \[ (4x+1)^{k/2 - 1/2} = (4x)^{k/2 - 1/2} = 4^{(k/2 - 1/2)} x^{(k/2 - 1/2)} \] To have terms up to \( x^1 \), we need \( k/2 - 1/2 \leq 1 \), which implies \( k \leq 5 \). ### Step 7: Determine the maximum \( k \) Since \( k \) must be odd, the maximum odd \( k \) that satisfies \( k \leq 5 \) is \( k = 5 \). ### Step 8: Find the corresponding \( n \) The highest odd \( k \) in the expansion corresponds to \( n \) needing to be at least \( 5 \). However, to ensure we can reach \( k = 5 \), we need \( n \) to be at least \( 11 \) (as \( k \) can go up to \( n \)). Thus, the possible value of \( n \) is: \[ n = 11 \] ### Conclusion The possible value of \( n \) is \( 11 \).

To solve the given problem step by step, we will analyze the expression and simplify it to find the possible value of \( n \). ### Step 1: Rewrite the given expression The given expression is: \[ \frac{1}{\sqrt{4x+1}} \left( \left( \frac{1+\sqrt{4x+1}}{2} \right)^n - \left( \frac{1-\sqrt{4x+1}}{2} \right)^n \right) = a_0 + a_1 x \] We can simplify the left-hand side. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1+sqrt(4x+1))/2)^7}

Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1+sqrt(4x+1))/2)^7}

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

If p(x)=(1+x^2+x^4++x^(2n-2))//(1+x+x^2++x^(n-1)) is a polomial in x , then find possible value of ndot

If p(x)=(1+x^2+x^4++x^(2n-2))//(1+x+x^2++x^(n-1)) is a polomial in x , then find possible value of ndot

If int_0^1 (1+x+sqrt(x+x^2))/(sqrt(x)+sqrt(1+x))dx=1/a(2^a-1) , then the value of 4a^2 is …

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

Evaluate lim_(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

If x=sqrt 2 +1 , find the value of x^4+1/x^4

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. If n be a positive integer and Pn denotes the product of the binomial ...

    Text Solution

    |

  2. Prove that in the expansion of (1+x)^(n) (1+y)^(n) (1+z)^(n), the sum ...

    Text Solution

    |

  3. If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a0+a1x t...

    Text Solution

    |

  4. If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r...

    Text Solution

    |

  5. the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2), is

    Text Solution

    |

  6. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  7. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  8. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |

  9. sum(r=1)^(n) {sum(r1=0)^(r-1) ""^(n)C(r) ""^(r)C(r(1)) 2^(r1)} is equ...

    Text Solution

    |

  10. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  11. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  12. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |

  13. The sum of the series ""^(3)C(0)- ""^(4)C(1) . (1)/(2) + ""^(5)C(2)...

    Text Solution

    |

  14. Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) a(r) x^(r) . If sum(r=0)^(2n...

    Text Solution

    |

  15. If binomial coeffients of three consecutive terms of (1 + x )^(n) ar...

    Text Solution

    |

  16. If n is an even integer and a, b, c are distinct number, then the nu...

    Text Solution

    |

  17. The number of non negative integral solution of the equation, x+ y+3z ...

    Text Solution

    |

  18. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  19. If the expansion in powers of x be the function 1//[(1-ax)(1-bx)] is a...

    Text Solution

    |

  20. Which is larger number , 99^(100) + 100^(50) or 101^(50) ?

    Text Solution

    |