Home
Class 11
MATHS
If (1 + x + x^(2) + x^(3))^(n)= a(0) + a...

If `(1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n)`, then the
value of `a_(0) + a_(4) +a_(8) + a_(12)+….. ` is

A

-1

B

0

C

`4^(n-1)`

D

n

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a_0 + a_4 + a_8 + a_{12} + \ldots \) from the expression \( (1 + x + x^2 + x^3)^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{3n} x^{3n} \), we can follow these steps: ### Step 1: Simplify the expression The expression \( 1 + x + x^2 + x^3 \) can be rewritten using the formula for the sum of a geometric series: \[ 1 + x + x^2 + x^3 = \frac{1 - x^4}{1 - x} \quad \text{for } x \neq 1 \] Thus, we have: \[ (1 + x + x^2 + x^3)^n = \left( \frac{1 - x^4}{1 - x} \right)^n \] ### Step 2: Evaluate at specific values of \( x \) To find the coefficients \( a_0, a_4, a_8, \ldots \), we will evaluate the expression at specific values of \( x \). #### Step 2.1: Set \( x = 1 \) \[ (1 + 1 + 1 + 1)^n = 4^n = a_0 + a_1 + a_2 + a_3 + \ldots + a_{3n} \] This gives us: \[ a_0 + a_1 + a_2 + a_3 + \ldots + a_{3n} = 4^n \] #### Step 2.2: Set \( x = -1 \) \[ (1 - 1 + 1 - 1)^n = 0^n = 0 = a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^{3n} a_{3n} \] This gives us: \[ a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^{3n} a_{3n} = 0 \] #### Step 2.3: Set \( x = i \) (where \( i \) is the imaginary unit) \[ (1 + i + i^2 + i^3)^n = (1 + i - 1 - i)^n = 0^n = 0 \] This gives us: \[ a_0 + a_1 i - a_2 - a_3 i = 0 \] #### Step 2.4: Set \( x = -i \) \[ (1 - i + (-i)^2 + (-i)^3)^n = (1 - i - 1 + i)^n = 0^n = 0 \] This gives us: \[ a_0 - a_1 i - a_2 + a_3 i = 0 \] ### Step 3: Add the equations Now, we will add the equations obtained from \( x = 1 \), \( x = -1 \), \( x = i \), and \( x = -i \): 1. From \( x = 1 \): \[ a_0 + a_1 + a_2 + a_3 + \ldots + a_{3n} = 4^n \] 2. From \( x = -1 \): \[ a_0 - a_1 + a_2 - a_3 + \ldots + (-1)^{3n} a_{3n} = 0 \] 3. From \( x = i \): \[ a_0 + a_1 i - a_2 - a_3 i = 0 \] 4. From \( x = -i \): \[ a_0 - a_1 i - a_2 + a_3 i = 0 \] ### Step 4: Solve for the coefficients By adding the equations from \( x = 1 \) and \( x = -1 \), we can isolate the terms that contribute to \( a_0 + a_4 + a_8 + \ldots \): \[ 4^n + 0 = 2a_0 + 2a_2 + 2a_4 + \ldots \] This simplifies to: \[ a_0 + a_4 + a_8 + \ldots = \frac{4^n}{2} = 2^{2n - 1} \] ### Final Result Thus, the value of \( a_0 + a_4 + a_8 + a_{12} + \ldots \) is: \[ \boxed{2^{2n - 1}} \]

To find the value of \( a_0 + a_4 + a_8 + a_{12} + \ldots \) from the expression \( (1 + x + x^2 + x^3)^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{3n} x^{3n} \), we can follow these steps: ### Step 1: Simplify the expression The expression \( 1 + x + x^2 + x^3 \) can be rewritten using the formula for the sum of a geometric series: \[ 1 + x + x^2 + x^3 = \frac{1 - x^4}{1 - x} \quad \text{for } x \neq 1 \] Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1 + x + x^(2) + x^(3))^(n) = a_(0) + a_(1)x + a_(2)x^(2)+"……….."a_(3n)x^(3n) then which of following are correct

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. the coefficient of x^(r) in the expansion of (1 - 4x )^(-1//2), is

    Text Solution

    |

  2. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  3. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  4. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |

  5. sum(r=1)^(n) {sum(r1=0)^(r-1) ""^(n)C(r) ""^(r)C(r(1)) 2^(r1)} is equ...

    Text Solution

    |

  6. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  7. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  8. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |

  9. The sum of the series ""^(3)C(0)- ""^(4)C(1) . (1)/(2) + ""^(5)C(2)...

    Text Solution

    |

  10. Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) a(r) x^(r) . If sum(r=0)^(2n...

    Text Solution

    |

  11. If binomial coeffients of three consecutive terms of (1 + x )^(n) ar...

    Text Solution

    |

  12. If n is an even integer and a, b, c are distinct number, then the nu...

    Text Solution

    |

  13. The number of non negative integral solution of the equation, x+ y+3z ...

    Text Solution

    |

  14. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  15. If the expansion in powers of x be the function 1//[(1-ax)(1-bx)] is a...

    Text Solution

    |

  16. Which is larger number , 99^(100) + 100^(50) or 101^(50) ?

    Text Solution

    |

  17. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  18. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  19. If f (n) = sum(s=1)^n sum(r=s)^n "^nCr "^rCs , then f(3) =

    Text Solution

    |

  20. The coefficient of x^2012 in the expansion of (1 - x)^2008 (1+x+x^2)...

    Text Solution

    |