Home
Class 11
MATHS
The value of ""(n)C(1). X(1 - x )^(n-...

The value of
`""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2)`
` + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in ` N is

A

nx

B

` n(n -x)`

C

` n (x-1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression: \[ S_n = \sum_{r=1}^{n} r \cdot \binom{n}{r} x^r (1-x)^{n-r} \] we will follow these steps: ### Step 1: Rewrite the expression We can express \( r \cdot \binom{n}{r} \) in a different form. Recall that \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \). Thus, we can rewrite \( S_n \) as: \[ S_n = \sum_{r=1}^{n} n \cdot \binom{n-1}{r-1} x^r (1-x)^{n-r} \] ### Step 2: Factor out the constant Since \( n \) is a constant with respect to the summation, we can factor it out: \[ S_n = n \sum_{r=1}^{n} \binom{n-1}{r-1} x^r (1-x)^{n-r} \] ### Step 3: Change the index of summation Next, we can change the index of summation by letting \( k = r - 1 \). When \( r = 1 \), \( k = 0 \) and when \( r = n \), \( k = n - 1 \). Thus, we have: \[ S_n = n \sum_{k=0}^{n-1} \binom{n-1}{k} x^{k+1} (1-x)^{(n-1)-(k+1)} \] This simplifies to: \[ S_n = n x \sum_{k=0}^{n-1} \binom{n-1}{k} x^k (1-x)^{n-1-k} \] ### Step 4: Recognize the binomial expansion The sum \( \sum_{k=0}^{n-1} \binom{n-1}{k} x^k (1-x)^{(n-1)-k} \) is the binomial expansion of \( (x + (1-x))^{n-1} = 1^{n-1} = 1 \). ### Step 5: Final result Thus, we have: \[ S_n = n x \cdot 1 = n x \] ### Conclusion The value of the original expression is: \[ \boxed{n x} \]

To solve the given expression: \[ S_n = \sum_{r=1}^{n} r \cdot \binom{n}{r} x^r (1-x)^{n-r} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

The expansion (a+x)^(n) = .^(n)c_(0)a^(n) + ^(n)c_(1)a^(n-1)x + ………… + .^(n)c_(n)x^(n) is valid when n is

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N,

    Text Solution

    |

  2. If (1 + x + x^(2) + x^(3))^(n)= a(0) + a(1)x + a(2)x^(2) + a(3) x^(3) ...

    Text Solution

    |

  3. The value of ""(n)C(1). X(1 - x )^(n-1) + 2 . ""^(n)C(2) x^(2) (1 -...

    Text Solution

    |

  4. sum(r=1)^(n) {sum(r1=0)^(r-1) ""^(n)C(r) ""^(r)C(r(1)) 2^(r1)} is equ...

    Text Solution

    |

  5. The coefficients of x^(13) in the expansion of (1 - x)^(5) (1 + x...

    Text Solution

    |

  6. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  7. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |

  8. The sum of the series ""^(3)C(0)- ""^(4)C(1) . (1)/(2) + ""^(5)C(2)...

    Text Solution

    |

  9. Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) a(r) x^(r) . If sum(r=0)^(2n...

    Text Solution

    |

  10. If binomial coeffients of three consecutive terms of (1 + x )^(n) ar...

    Text Solution

    |

  11. If n is an even integer and a, b, c are distinct number, then the nu...

    Text Solution

    |

  12. The number of non negative integral solution of the equation, x+ y+3z ...

    Text Solution

    |

  13. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  14. If the expansion in powers of x be the function 1//[(1-ax)(1-bx)] is a...

    Text Solution

    |

  15. Which is larger number , 99^(100) + 100^(50) or 101^(50) ?

    Text Solution

    |

  16. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  17. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  18. If f (n) = sum(s=1)^n sum(r=s)^n "^nCr "^rCs , then f(3) =

    Text Solution

    |

  19. The coefficient of x^2012 in the expansion of (1 - x)^2008 (1+x+x^2)...

    Text Solution

    |

  20. If w is a non-real cube root of unity, x is a real number and n in N s...

    Text Solution

    |