Home
Class 11
MATHS
Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) ...

Let `(1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r)` . If `sum_(r=0)^(2n)(1)/(a_(r))= alpha` , then ` sum_(r=0)^(2n) (r)/(a_(r))` =

A

n`alpha`

B

`(n - 1) alpha `

C

`(alpha)/(n)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's analyze the given expression and derive the required result. ### Given: \[ (1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r \] We need to find: \[ \sum_{r=0}^{2n} \frac{r}{a_r} \] given that: \[ \sum_{r=0}^{2n} \frac{1}{a_r} = \alpha \] ### Step 1: Substitute \( x = \frac{1}{x} \) We start by substituting \( x = \frac{1}{x} \) in the original expression: \[ (1 + \frac{1}{x} + \frac{1}{x^2})^n = \left(\frac{x^2 + x + 1}{x^2}\right)^n = \frac{(x^2 + x + 1)^n}{x^{2n}} \] This implies: \[ (1 + x + x^2)^n = x^{2n} \cdot \sum_{r=0}^{2n} a_r x^r \] ### Step 2: Identify Coefficients From the above equation, we can see that the coefficients of \( x^r \) in \( (1 + x + x^2)^n \) correspond to \( a_r \) and \( a_{2n - r} \). Thus: \[ a_r = a_{2n - r} \] ### Step 3: Relate \( \sum_{r=0}^{2n} \frac{r}{a_r} \) and \( \sum_{r=0}^{2n} \frac{2n - r}{a_r} \) Using the symmetry of the coefficients: \[ \sum_{r=0}^{2n} \frac{r}{a_r} = \sum_{r=0}^{2n} \frac{2n - r}{a_{2n - r}} = \sum_{r=0}^{2n} \frac{2n}{a_r} - \sum_{r=0}^{2n} \frac{r}{a_r} \] Let \( S = \sum_{r=0}^{2n} \frac{r}{a_r} \). Then we have: \[ S = \sum_{r=0}^{2n} \frac{2n}{a_r} - S \] This simplifies to: \[ 2S = 2n \sum_{r=0}^{2n} \frac{1}{a_r} \] Thus: \[ S = n \sum_{r=0}^{2n} \frac{1}{a_r} \] ### Step 4: Substitute the value of \( \sum_{r=0}^{2n} \frac{1}{a_r} \) From the given information: \[ \sum_{r=0}^{2n} \frac{1}{a_r} = \alpha \] Substituting this into the equation for \( S \): \[ S = n \alpha \] ### Final Result Thus, we conclude that: \[ \sum_{r=0}^{2n} \frac{r}{a_r} = n \alpha \]

To solve the problem step by step, let's analyze the given expression and derive the required result. ### Given: \[ (1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r \] We need to find: \[ ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+x^(2))^(n) =sum_(r=0)^(n) a_(r)x^(r )= (1+x+x^(2)+x^(3))^(100) . If a = sum_(r=0)^(300)a_(r) , then sum_(r=0)^(300) ra_(r) is

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. The sum of the series 1 + (1)/(1!) ((1)/(4)) + (1.3)/(2!) ((1)/(4))...

    Text Solution

    |

  2. The sum of the series ""^(3)C(0)- ""^(4)C(1) . (1)/(2) + ""^(5)C(2)...

    Text Solution

    |

  3. Let (1 + x + x^(2))^(n) = sum(r=0)^(2n) a(r) x^(r) . If sum(r=0)^(2n...

    Text Solution

    |

  4. If binomial coeffients of three consecutive terms of (1 + x )^(n) ar...

    Text Solution

    |

  5. If n is an even integer and a, b, c are distinct number, then the nu...

    Text Solution

    |

  6. The number of non negative integral solution of the equation, x+ y+3z ...

    Text Solution

    |

  7. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  8. If the expansion in powers of x be the function 1//[(1-ax)(1-bx)] is a...

    Text Solution

    |

  9. Which is larger number , 99^(100) + 100^(50) or 101^(50) ?

    Text Solution

    |

  10. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  11. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  12. If f (n) = sum(s=1)^n sum(r=s)^n "^nCr "^rCs , then f(3) =

    Text Solution

    |

  13. The coefficient of x^2012 in the expansion of (1 - x)^2008 (1+x+x^2)...

    Text Solution

    |

  14. If w is a non-real cube root of unity, x is a real number and n in N s...

    Text Solution

    |

  15. If alpha !=1 is an n^(th) root of unity and n in N such thatfirst thr...

    Text Solution

    |

  16. The coefficient of x^50 in (1+x^2)^25(1+x^25)(1+x^40)(1+ x^45) (1 + x^...

    Text Solution

    |

  17. Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  18. If C(0), C(1), C(2), …, C(n) denote the binomial coefficients in th...

    Text Solution

    |

  19. If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n)Ck)^2=A , then find the value...

    Text Solution

    |

  20. sum(r=0)^(n)(-1)^(r)(""^(n)C(r))/(""^(r+3)C(r)) is equal to :

    Text Solution

    |