Home
Class 11
MATHS
If f (n) = sum(s=1)^n sum(r=s)^n "^nCr ...

If `f (n) = sum_(s=1)^n sum_(r=s)^n "^nC_r`` "^rC_s` , then `f(3) =`

A

27

B

19

C

1

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the function \( f(n) \) defined as: \[ f(n) = \sum_{s=1}^{n} \sum_{r=s}^{n} \binom{n}{r} \binom{r}{s} \] We are tasked with finding \( f(3) \). ### Step-by-Step Solution 1. **Set Up the Summation for \( n = 3 \)**: \[ f(3) = \sum_{s=1}^{3} \sum_{r=s}^{3} \binom{3}{r} \binom{r}{s} \] 2. **Evaluate the Inner Summation for Each Value of \( s \)**: - **Case 1: \( s = 1 \)**: \[ \sum_{r=1}^{3} \binom{3}{r} \binom{r}{1} \] - For \( r = 1 \): \( \binom{3}{1} \binom{1}{1} = 3 \cdot 1 = 3 \) - For \( r = 2 \): \( \binom{3}{2} \binom{2}{1} = 3 \cdot 2 = 6 \) - For \( r = 3 \): \( \binom{3}{3} \binom{3}{1} = 1 \cdot 3 = 3 \) - Total for \( s = 1 \): \( 3 + 6 + 3 = 12 \) - **Case 2: \( s = 2 \)**: \[ \sum_{r=2}^{3} \binom{3}{r} \binom{r}{2} \] - For \( r = 2 \): \( \binom{3}{2} \binom{2}{2} = 3 \cdot 1 = 3 \) - For \( r = 3 \): \( \binom{3}{3} \binom{3}{2} = 1 \cdot 3 = 3 \) - Total for \( s = 2 \): \( 3 + 3 = 6 \) - **Case 3: \( s = 3 \)**: \[ \sum_{r=3}^{3} \binom{3}{r} \binom{r}{3} \] - For \( r = 3 \): \( \binom{3}{3} \binom{3}{3} = 1 \cdot 1 = 1 \) - Total for \( s = 3 \): \( 1 \) 3. **Combine the Results**: \[ f(3) = (12) + (6) + (1) = 19 \] ### Final Answer Thus, the value of \( f(3) \) is \( \boxed{19} \).

To solve the problem, we need to compute the function \( f(n) \) defined as: \[ f(n) = \sum_{s=1}^{n} \sum_{r=s}^{n} \binom{n}{r} \binom{r}{s} \] We are tasked with finding \( f(3) \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

sum_(r=1)^n r (n-r +1) is equal to :

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  2. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  3. If f (n) = sum(s=1)^n sum(r=s)^n "^nCr "^rCs , then f(3) =

    Text Solution

    |

  4. The coefficient of x^2012 in the expansion of (1 - x)^2008 (1+x+x^2)...

    Text Solution

    |

  5. If w is a non-real cube root of unity, x is a real number and n in N s...

    Text Solution

    |

  6. If alpha !=1 is an n^(th) root of unity and n in N such thatfirst thr...

    Text Solution

    |

  7. The coefficient of x^50 in (1+x^2)^25(1+x^25)(1+x^40)(1+ x^45) (1 + x^...

    Text Solution

    |

  8. Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  9. If C(0), C(1), C(2), …, C(n) denote the binomial coefficients in th...

    Text Solution

    |

  10. If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n)Ck)^2=A , then find the value...

    Text Solution

    |

  11. sum(r=0)^(n)(-1)^(r)(""^(n)C(r))/(""^(r+3)C(r)) is equal to :

    Text Solution

    |

  12. If C(0), C(1) C(2) ….., denote the binomial coefficients in the exp...

    Text Solution

    |

  13. If C0, C1,C2 ..., Cn, denote the binomial coefficients in the expans...

    Text Solution

    |

  14. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  15. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  16. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  17. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  18. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  19. The power of x which has the greatest coefficient inthe expansion of ...

    Text Solution

    |

  20. The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +...

    Text Solution

    |