Home
Class 11
MATHS
If C(0), C(1), C(2), …, C(n) denote the ...

If `C_(0), C_(1), C_(2), …, C_(n)` denote the binomial coefficients
in the expansion of `(1 + x)^(n)`, then
`C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =`

A

`(2n +1)""^(2n)C_(n)`

B

`(2n -1)""^(2n)C_(n)`

C

`((n)/(2)+1) ""^(2n)C_(n)`

D

`((n)/(2) +1) ""^(2n-1)C_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n + 1)C_n^2 \] where \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: **Step 1: Define the sum.** Let \( S = C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n + 1)C_n^2 \). **Hint 1:** Recognize that \( S \) is a weighted sum of the squares of the binomial coefficients. --- **Step 2: Reverse the order of summation.** We can express \( S \) in terms of \( C_{n-k} \) using the property of binomial coefficients \( C_k = C_{n-k} \). **Hint 2:** Use the symmetry property of binomial coefficients to rewrite the terms. --- **Step 3: Rewrite \( S \).** By reversing the indices, we can write: \[ S = C_n^2 + 2C_{n-1}^2 + 3C_{n-2}^2 + \ldots + (n + 1)C_0^2 \] **Hint 3:** This gives you a second expression for \( S \) which can be combined with the first. --- **Step 4: Add the two expressions for \( S \).** Now, we have two expressions for \( S \): \[ S = C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n + 1)C_n^2 \] \[ S = C_n^2 + 2C_{n-1}^2 + 3C_{n-2}^2 + \ldots + (n + 1)C_0^2 \] Adding these two gives: \[ 2S = (n + 1)(C_0^2 + C_1^2 + C_2^2 + \ldots + C_n^2) \] **Hint 4:** Notice that you can factor out \( (n + 1) \) from the sum. --- **Step 5: Use the known formula for the sum of squares of binomial coefficients.** The sum of the squares of the binomial coefficients is given by: \[ C_0^2 + C_1^2 + C_2^2 + \ldots + C_n^2 = C_{2n}^0 \] Thus, we can write: \[ 2S = (n + 1) C_{2n}^0 \] **Hint 5:** Remember the identity for the sum of squares of binomial coefficients. --- **Step 6: Solve for \( S \).** Now, we can solve for \( S \): \[ S = \frac{(n + 1)}{2} C_{2n}^0 \] **Hint 6:** Simplify the expression to find the final result. --- **Final Result:** The value of the original expression is: \[ S = \frac{(n + 1)}{2} C_{2n}^0 \] This gives us the required sum in terms of \( n \) and the binomial coefficients. ---

To solve the problem, we need to find the value of the expression: \[ C_0^2 + 2C_1^2 + 3C_2^2 + \ldots + (n + 1)C_n^2 \] where \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. If alpha !=1 is an n^(th) root of unity and n in N such thatfirst thr...

    Text Solution

    |

  2. The coefficient of x^50 in (1+x^2)^25(1+x^25)(1+x^40)(1+ x^45) (1 + x^...

    Text Solution

    |

  3. Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  4. If C(0), C(1), C(2), …, C(n) denote the binomial coefficients in th...

    Text Solution

    |

  5. If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n)Ck)^2=A , then find the value...

    Text Solution

    |

  6. sum(r=0)^(n)(-1)^(r)(""^(n)C(r))/(""^(r+3)C(r)) is equal to :

    Text Solution

    |

  7. If C(0), C(1) C(2) ….., denote the binomial coefficients in the exp...

    Text Solution

    |

  8. If C0, C1,C2 ..., Cn, denote the binomial coefficients in the expans...

    Text Solution

    |

  9. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  10. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  11. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  12. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  13. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  14. The power of x which has the greatest coefficient inthe expansion of ...

    Text Solution

    |

  15. The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +...

    Text Solution

    |

  16. The sum of rational term(s) in (sqrt3 + 2^(1/3) + 5^(1/4))^8 is equal ...

    Text Solution

    |

  17. If f(x) is periodic with periot 't' such that f(2x + 3) + f(2x+7) = ...

    Text Solution

    |

  18. The number of real negative terms in the binomial expansion of (1+i x)...

    Text Solution

    |

  19. If (3+asqrt2)^100+(3+bsqrt2)^100=7+5sqrt2 number of pairs (a, b) for...

    Text Solution

    |

  20. The value of sum(r=0)^(n) r(n -r) (""^(n)C(r))^(2) is equal to

    Text Solution

    |