Home
Class 11
MATHS
If C0, C1,C2 ..., Cn, denote the binom...

If `C_0, C_1,C_2 ..., C_n`, denote the binomial coefficients in the expansion of `(1 + x)^n`, then `C_1/2+C_3/4+C_5/6+......` is equal to

A

`(2^(n) -1)/(n+1)`

B

`(2^(n))/(n+2)`

C

`(2^(n-1))/(n)`

D

`(2^(n-1))/(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \( S = \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \ldots \), where \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \), we can follow these steps: ### Step 1: Understand the Binomial Expansion The binomial expansion of \( (1 + x)^n \) can be expressed as: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). ### Step 2: Consider the Expansion of \( (1 - x)^n \) Similarly, the expansion of \( (1 - x)^n \) is: \[ (1 - x)^n = C_0 - C_1 x + C_2 x^2 - C_3 x^3 + \ldots + (-1)^n C_n x^n \] ### Step 3: Subtract the Two Expansions Now, if we subtract the second expansion from the first: \[ (1 + x)^n - (1 - x)^n = (C_1 + C_3 x^3 + C_5 x^5 + \ldots) - (C_1 - C_3 x^3 + C_5 x^5 - \ldots) \] This simplifies to: \[ 2(C_1 x + C_3 x^3 + C_5 x^5 + \ldots) \] ### Step 4: Simplify the Expression The left-hand side becomes: \[ (1 + x)^n - (1 - x)^n = 2 \sum_{k \text{ odd}} C_k x^k \] Thus, we can express the sum of odd-indexed coefficients as: \[ \sum_{k \text{ odd}} C_k x^k = \frac{(1 + x)^n - (1 - x)^n}{2} \] ### Step 5: Integrate to Find the Required Sum To find the desired sum \( S \), we can integrate the expression: \[ S = \int_0^1 \left( \sum_{k \text{ odd}} C_k x^k \right) dx \] This gives: \[ S = \int_0^1 \frac{(1 + x)^n - (1 - x)^n}{2} dx \] ### Step 6: Evaluate the Integral Calculating the integral: \[ S = \frac{1}{2} \left[ \frac{(1 + x)^{n+1}}{n+1} - \frac{(1 - x)^{n+1}}{n+1} \right]_0^1 \] Evaluating at the limits: - At \( x = 1 \): \( (1 + 1)^{n+1} = 2^{n+1} \) and \( (1 - 1)^{n+1} = 0 \) - At \( x = 0 \): both terms equal to \( 1 \) Thus: \[ S = \frac{1}{2} \left( \frac{2^{n+1}}{n+1} - 0 \right) = \frac{2^{n+1}}{2(n+1)} = \frac{2^n}{n+1} \] ### Final Answer Therefore, the final result is: \[ S = \frac{2^n}{n + 1} \]

To solve the problem of finding the sum \( S = \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \ldots \), where \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \), we can follow these steps: ### Step 1: Understand the Binomial Expansion The binomial expansion of \( (1 + x)^n \) can be expressed as: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_o, C_1, C_2 ....,C_n C denote the binomial coefficients in the expansion of (1 + x)^n, then 1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. If alpha !=1 is an n^(th) root of unity and n in N such thatfirst thr...

    Text Solution

    |

  2. The coefficient of x^50 in (1+x^2)^25(1+x^25)(1+x^40)(1+ x^45) (1 + x^...

    Text Solution

    |

  3. Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  4. If C(0), C(1), C(2), …, C(n) denote the binomial coefficients in th...

    Text Solution

    |

  5. If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n)Ck)^2=A , then find the value...

    Text Solution

    |

  6. sum(r=0)^(n)(-1)^(r)(""^(n)C(r))/(""^(r+3)C(r)) is equal to :

    Text Solution

    |

  7. If C(0), C(1) C(2) ….., denote the binomial coefficients in the exp...

    Text Solution

    |

  8. If C0, C1,C2 ..., Cn, denote the binomial coefficients in the expans...

    Text Solution

    |

  9. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  10. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  11. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  12. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  13. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  14. The power of x which has the greatest coefficient inthe expansion of ...

    Text Solution

    |

  15. The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +...

    Text Solution

    |

  16. The sum of rational term(s) in (sqrt3 + 2^(1/3) + 5^(1/4))^8 is equal ...

    Text Solution

    |

  17. If f(x) is periodic with periot 't' such that f(2x + 3) + f(2x+7) = ...

    Text Solution

    |

  18. The number of real negative terms in the binomial expansion of (1+i x)...

    Text Solution

    |

  19. If (3+asqrt2)^100+(3+bsqrt2)^100=7+5sqrt2 number of pairs (a, b) for...

    Text Solution

    |

  20. The value of sum(r=0)^(n) r(n -r) (""^(n)C(r))^(2) is equal to

    Text Solution

    |