Home
Class 11
MATHS
The value of sum(r=0)^(n) r(n -r) (""^(n...

The value of `sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2)` is equal to

A

`n^(2) ""^(2n -1)C_(n -1)`

B

`n^(2) """^(2n-2)C_(n)`

C

`n^(2) ""^(2n)C_(n -1)`

D

`n^(2) ""^(2n -1)C_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S_n = \sum_{r=0}^{n} r(n - r) \binom{n}{r}^2 \] ### Step 1: Rewrite the sum We can rewrite the term \( r(n - r) \) in the sum as follows: \[ S_n = n \sum_{r=0}^{n} r \binom{n}{r}^2 - \sum_{r=0}^{n} r^2 \binom{n}{r}^2 \] ### Step 2: Use the identity for \( r \binom{n}{r} \) Using the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \), we can rewrite the first sum: \[ \sum_{r=0}^{n} r \binom{n}{r}^2 = n \sum_{r=1}^{n} \binom{n-1}{r-1} \binom{n}{r} = n \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n}{k+1} \] ### Step 3: Apply Vandermonde's identity Using Vandermonde's identity, we have: \[ \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r} \] Thus, \[ \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n}{k+1} = \binom{2n-1}{n} \] ### Step 4: Substitute back into the sum Now substituting back into our expression for \( S_n \): \[ S_n = n^2 \binom{2n-1}{n} - \sum_{r=0}^{n} r^2 \binom{n}{r}^2 \] ### Step 5: Evaluate \( \sum_{r=0}^{n} r^2 \binom{n}{r}^2 \) Using the identity \( r^2 \binom{n}{r} = n(n-1) \binom{n-2}{r-2} + n \binom{n-1}{r-1} \), we can express this sum as: \[ \sum_{r=0}^{n} r^2 \binom{n}{r}^2 = n(n-1) \sum_{r=2}^{n} \binom{n-2}{r-2} \binom{n}{r} + n \sum_{r=1}^{n} \binom{n-1}{r-1} \binom{n}{r} \] ### Step 6: Apply Vandermonde's identity again Using the same reasoning as before, we can evaluate these sums and substitute them back into \( S_n \). ### Final Result After all simplifications, we find that: \[ S_n = n^2 \binom{2n-1}{n} - n(n-1) \binom{2n-2}{n-1} \] Thus, the final value of the sum is: \[ S_n = n^2 \binom{2n-2}{n-1} \]

To solve the problem, we need to evaluate the sum: \[ S_n = \sum_{r=0}^{n} r(n - r) \binom{n}{r}^2 \] ### Step 1: Rewrite the sum We can rewrite the term \( r(n - r) \) in the sum as follows: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|103 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Section I - Solved Mcqs
  1. If alpha !=1 is an n^(th) root of unity and n in N such thatfirst thr...

    Text Solution

    |

  2. The coefficient of x^50 in (1+x^2)^25(1+x^25)(1+x^40)(1+ x^45) (1 + x^...

    Text Solution

    |

  3. Let f(n)= sum(k=1)^(n) k^2 ^"(n )Ck)^ 2 then the value of f(5) equals

    Text Solution

    |

  4. If C(0), C(1), C(2), …, C(n) denote the binomial coefficients in th...

    Text Solution

    |

  5. If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n)Ck)^2=A , then find the value...

    Text Solution

    |

  6. sum(r=0)^(n)(-1)^(r)(""^(n)C(r))/(""^(r+3)C(r)) is equal to :

    Text Solution

    |

  7. If C(0), C(1) C(2) ….., denote the binomial coefficients in the exp...

    Text Solution

    |

  8. If C0, C1,C2 ..., Cn, denote the binomial coefficients in the expans...

    Text Solution

    |

  9. For r = 0, 1,"…..",10, let A(r),B(r), and C(r) denote, respectively, t...

    Text Solution

    |

  10. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  11. If the coefficient of x^(3) and x^(4) in the expansion of (1+ax+bx^(2)...

    Text Solution

    |

  12. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  13. The coefficient of x^9 in the expansion of (1+x)(16 x^2)(1+x^3)(1+x^(1...

    Text Solution

    |

  14. The power of x which has the greatest coefficient inthe expansion of ...

    Text Solution

    |

  15. The term independent of x in the expansion of ((1)/(x^(2)) + (1)/(x) +...

    Text Solution

    |

  16. The sum of rational term(s) in (sqrt3 + 2^(1/3) + 5^(1/4))^8 is equal ...

    Text Solution

    |

  17. If f(x) is periodic with periot 't' such that f(2x + 3) + f(2x+7) = ...

    Text Solution

    |

  18. The number of real negative terms in the binomial expansion of (1+i x)...

    Text Solution

    |

  19. If (3+asqrt2)^100+(3+bsqrt2)^100=7+5sqrt2 number of pairs (a, b) for...

    Text Solution

    |

  20. The value of sum(r=0)^(n) r(n -r) (""^(n)C(r))^(2) is equal to

    Text Solution

    |