Home
Class 11
MATHS
If (1 + x + x^2)^n = (C0 + C1x + C2 x^2 ...

If `(1 + x + x^2)^n = (C_0 + C_1x + C_2 x^2 + ............)` then the value of `C_0 C_1-C_1C_2+C_2C_3.....`

A

`3^(n)`

B

`(-1)^(n)`

C

`2^(n)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( C_0 C_1 - C_1 C_2 + C_2 C_3 - \ldots \), where \( (1 + x + x^2)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We have \( (1 + x + x^2)^n \) expanded into a power series, where \( C_k \) are the coefficients of \( x^k \). 2. **Define the Expression \( S \)**: Let \( S = C_0 C_1 - C_1 C_2 + C_2 C_3 - C_3 C_4 + \ldots \). 3. **Substituting \( x \) with \( -\frac{1}{x} \)**: Replace \( x \) in the original equation with \( -\frac{1}{x} \): \[ (1 - \frac{1}{x} + \frac{1}{x^2})^n = C_0 - C_1 \frac{1}{x} + C_2 \frac{1}{x^2} - C_3 \frac{1}{x^3} + \ldots \] 4. **Simplifying the Left-Hand Side**: The left-hand side becomes: \[ \left(\frac{x^2 - x + 1}{x^2}\right)^n = \frac{(x^2 - x + 1)^n}{x^{2n}} \] 5. **Multiplying by \(-1\)**: Multiply both sides by \(-1\): \[ -\frac{(x^2 - x + 1)^n}{x^{2n}} = -C_0 + C_1 \frac{1}{x} - C_2 \frac{1}{x^2} + C_3 \frac{1}{x^3} - \ldots \] 6. **Identifying Coefficients**: From the expression, we can see that \( S \) corresponds to the coefficient of \( x^{-1} \) in the expansion of the left-hand side. 7. **Multiplying the Two Equations**: Now, multiply the original equation and the modified equation: \[ (1 + x + x^2)^n \cdot \left(-\frac{(x^2 - x + 1)^n}{x^{2n}}\right) \] This will help us find the coefficient of \( x^{-1} \). 8. **Finding the Coefficient of \( x^{-1} \)**: After simplification, we find that there are no terms of \( x^{-1} \) in the resulting expression. Therefore, the coefficient of \( x^{-1} \) is \( 0 \). 9. **Conclusion**: Thus, the value of \( S \) is: \[ S = 0 \] ### Final Answer: The value of \( C_0 C_1 - C_1 C_2 + C_2 C_3 - \ldots \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1 + x + x^2)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + ……..C_nx^n then find C_0 + C_3 + C_6 + …….

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_1 - C_3 + C_5 + ……

If (1 + x - 2 x^(2))^(6) = 1 + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(12) x^(12) , then the value of C_(2) + C_(4) + C_(6) + …+ C_(12) is

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_nx^n then the value of (C_0)^2+(C_1)^2/2+(C_2)^2/3+...+(C_n)^2/(n+1) is equal to

If (1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n ,then for n odd, C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2 , is equal to

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

If (1+x)^(15)=C_0+C_1x+C_2x^2++C_(15)x^(15), then find the value of C_2+2C_3+3C_4++14 C_(15)dot

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Exercise
  1. If the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the expan...

    Text Solution

    |

  2. If C(r) stands for .^(r)C(r), then the sum of the first (n+1) terms o ...

    Text Solution

    |

  3. If (1 + x + x^2)^n = (C0 + C1x + C2 x^2 + ............) then the value...

    Text Solution

    |

  4. If the coefficients of 2nd, 3rd and the 4th terms in the expansion of ...

    Text Solution

    |

  5. If the coefficient of 2nd, 3rd and 4th terms in the expansion of (1...

    Text Solution

    |

  6. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  7. Find the term in(3sqrt(((a)/(sqrt(b))) + (sqrt((b)/ ^3sqrt(a))))^(21) ...

    Text Solution

    |

  8. If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1+...

    Text Solution

    |

  9. Find the coefficient of x^4 in the expansion of (1+x+x^2+x^3)^(11)dot

    Text Solution

    |

  10. If (1 + x - 2 x^(2))^(6) = 1 + C(1) x + C(2) x^(2) + C(3) x^(3) + …+ C...

    Text Solution

    |

  11. If the coefficient of the middle of term in the expansion of (1+x)^(2n...

    Text Solution

    |

  12. If a1,a2, a3, a4 be the coefficient of four consecutive terms in the e...

    Text Solution

    |

  13. The coefficient of x^r[0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+...

    Text Solution

    |

  14. If (1-x+x^2)^n=a0+a1x+a2x^2+ .........+a(2n)x^(2n),\ find the value o...

    Text Solution

    |

  15. The coefficient of x^m in (1+x)^m +(1+m)^(m+1) +...+(1+x)^n ,m≤n is

    Text Solution

    |

  16. the coefficient of x^(7) in (ax - b^(-1) x^(-2))^(11) is

    Text Solution

    |

  17. Find the coefficient of x^5 in the expansion of (1+x^2)^5(1+x)^4.

    Text Solution

    |

  18. Find the greatest term in the expansion of sqrt(3)(1+1/(sqrt(3)))^(20)...

    Text Solution

    |

  19. If T0,T1, T2, ,Tn represent the terms in the expansion of (x+a)^n , t...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |