Home
Class 11
MATHS
If C(0), C(1), C(2), ..., C(n) denote th...

If `C_(0), C_(1), C_(2), ..., C_(n)` denote the binomial
cefficients in the expansion of `(1 + x )^(n)` , then
` a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = `.

A

`(a + nb)2^(n)`

B

`(a + nb)2 ^(n-1)`

C

`(2a + nb) 2^(n-1)`

D

`(2a + nb)2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S_n = a C_0 + (a + b) C_1 + (a + 2b) C_2 + \ldots + (a + nb) C_n \] where \( C_r \) are the binomial coefficients from the expansion of \( (1 + x)^n \). ### Step 1: Rewrite the expression We can break down the expression \( S_n \) into two separate sums: \[ S_n = \sum_{r=0}^{n} a C_r + \sum_{r=0}^{n} (r b) C_r \] ### Step 2: Evaluate the first sum The first sum can be simplified as follows: \[ \sum_{r=0}^{n} a C_r = a \sum_{r=0}^{n} C_r \] Using the binomial theorem, we know that: \[ \sum_{r=0}^{n} C_r = 2^n \] Thus, \[ \sum_{r=0}^{n} a C_r = a \cdot 2^n \] ### Step 3: Evaluate the second sum For the second sum, we can use the identity \( r C_r = n C_{r-1} \): \[ \sum_{r=0}^{n} (r b) C_r = b \sum_{r=0}^{n} r C_r = b \sum_{r=1}^{n} n C_{r-1} \] Changing the index of summation: \[ \sum_{r=1}^{n} n C_{r-1} = n \sum_{s=0}^{n-1} C_s = n \cdot 2^{n-1} \] Thus, we have: \[ \sum_{r=0}^{n} (r b) C_r = b \cdot n \cdot 2^{n-1} \] ### Step 4: Combine the results Now we can combine both sums: \[ S_n = a \cdot 2^n + b \cdot n \cdot 2^{n-1} \] ### Step 5: Factor out common terms Factoring out \( 2^{n-1} \): \[ S_n = 2^{n-1} (2a + bn) \] ### Final Result Thus, the final answer is: \[ S_n = 2^{n-1} (2a + bn) \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Exercise
  1. Find the remainder when 5^(99) is divided by 13.

    Text Solution

    |

  2. If Co C1, C2,.......,Cn denote the binomial coefficients in the expans...

    Text Solution

    |

  3. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  4. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  5. Find the sum 3 .^(n)C(0) - 8 .^(n)C(1) + 13 .^(n)C(2) - 18 xx .^(n)C(...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1)x + C(2) x^(2) + …+ C(n) x^(n), then for n...

    Text Solution

    |

  7. If (1+x)^(n) = C(0) + C(1) xm + C(2)x^(2) + "……" + C(n)x^(n), then ...

    Text Solution

    |

  8. Find the sum 2C0+(2^3)/2C1+(2^3)/3C2+(2^4)/4C3++(2^(11))/(11)C(10)dot

    Text Solution

    |

  9. Prove that ""^(m+n)C(r) = ""^(m)C(r) + ""^(m)C(r-1) + ""^(n)C(1) +...

    Text Solution

    |

  10. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |

  11. The term independent of x in the expansion of (x-1/x)^(4) (x+1/x)^(3) ...

    Text Solution

    |

  12. if the coefficients of x^(5)" and "x^(15) in the expansion of (x^(2)+(...

    Text Solution

    |

  13. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  14. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The coefficient of x^(n) in the expansion of (1)/((1-x)(3 -x)), is

    Text Solution

    |

  17. The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3))...

    Text Solution

    |

  18. If (r+1)t h term is the first negative term in the expansion of (1+x)^...

    Text Solution

    |

  19. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  20. The coefficient of x^n in the expansion of (1 + x+x^2+...........)^-...

    Text Solution

    |