Home
Class 11
MATHS
Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r...

Let `(1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r)` and ,
`(C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1)`,
then the value of k, is

A

`1//2`

B

2

C

`1//3`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( k \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficient**: We start with the binomial expansion of \( (1 + x)^n \): \[ (1 + x)^n = \sum_{r=0}^{n} C(n, r) x^r \] where \( C(n, r) \) is the binomial coefficient, defined as \( C(n, r) = \frac{n!}{r!(n-r)!} \). 2. **Rewriting the Given Expression**: We need to evaluate the expression: \[ S_n = \frac{C(1)}{C(0)} + 2 \frac{C(2)}{C(1)} + \frac{C(3)}{C(2)} + \ldots + n \frac{C(n)}{C(n-1)} \] 3. **Using the Property of Binomial Coefficients**: We know that: \[ \frac{C(r)}{C(r-1)} = \frac{n - r + 1}{r} \] Therefore, we can rewrite the expression \( S_n \): \[ S_n = \sum_{r=1}^{n} r \cdot \frac{C(n, r)}{C(n, r-1)} = \sum_{r=1}^{n} r \cdot \frac{n - r + 1}{r} \] This simplifies to: \[ S_n = \sum_{r=1}^{n} (n - r + 1) \] 4. **Calculating the Summation**: The summation can be split: \[ S_n = \sum_{r=1}^{n} n - \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1 \] The first term gives \( n^2 \) (since we have \( n \) added \( n \) times), the second term gives \( \frac{n(n + 1)}{2} \) (the sum of the first \( n \) natural numbers), and the last term gives \( n \): \[ S_n = n^2 - \frac{n(n + 1)}{2} + n \] 5. **Combining the Terms**: Combining these terms: \[ S_n = n^2 + n - \frac{n(n + 1)}{2} \] To simplify, we can write: \[ S_n = n^2 + n - \frac{n^2 + n}{2} = n^2 + n - \frac{n^2}{2} - \frac{n}{2} \] \[ S_n = \frac{2n^2 + 2n - n^2 - n}{2} = \frac{n^2 + n}{2} \] 6. **Setting the Expression Equal to the Given Format**: We have: \[ S_n = \frac{n(n + 1)}{2} \] The problem states: \[ S_n = \frac{1}{k} n(n + 1) \] Therefore, equating both expressions gives: \[ \frac{n(n + 1)}{2} = \frac{1}{k} n(n + 1) \] 7. **Solving for \( k \)**: Assuming \( n(n + 1) \neq 0 \), we can cancel \( n(n + 1) \) from both sides: \[ \frac{1}{2} = \frac{1}{k} \] Thus, we find: \[ k = 2 \] ### Final Answer: The value of \( k \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

Find the sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i) .

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Exercise
  1. If Co C1, C2,.......,Cn denote the binomial coefficients in the expans...

    Text Solution

    |

  2. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  3. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  4. Find the sum 3 .^(n)C(0) - 8 .^(n)C(1) + 13 .^(n)C(2) - 18 xx .^(n)C(...

    Text Solution

    |

  5. If (1 + x)^(n) = C(0) + C(1)x + C(2) x^(2) + …+ C(n) x^(n), then for n...

    Text Solution

    |

  6. If (1+x)^(n) = C(0) + C(1) xm + C(2)x^(2) + "……" + C(n)x^(n), then ...

    Text Solution

    |

  7. Find the sum 2C0+(2^3)/2C1+(2^3)/3C2+(2^4)/4C3++(2^(11))/(11)C(10)dot

    Text Solution

    |

  8. Prove that ""^(m+n)C(r) = ""^(m)C(r) + ""^(m)C(r-1) + ""^(n)C(1) +...

    Text Solution

    |

  9. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |

  10. The term independent of x in the expansion of (x-1/x)^(4) (x+1/x)^(3) ...

    Text Solution

    |

  11. if the coefficients of x^(5)" and "x^(15) in the expansion of (x^(2)+(...

    Text Solution

    |

  12. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  13. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The coefficient of x^(n) in the expansion of (1)/((1-x)(3 -x)), is

    Text Solution

    |

  16. The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3))...

    Text Solution

    |

  17. If (r+1)t h term is the first negative term in the expansion of (1+x)^...

    Text Solution

    |

  18. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  19. The coefficient of x^n in the expansion of (1 + x+x^2+...........)^-...

    Text Solution

    |

  20. If the binomial expansion of (a +b x)^-2 is 1/4-3x+......., then (a, ...

    Text Solution

    |