Home
Class 11
MATHS
If (1 + x)^(n) = C(0) + C(1)x + C(2) x^(...

If `(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n)`, then for n odd,
`C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2)` is equal to

A

`2^(2n -2)`

B

`2^(n)`

C

`((2n)!)/(2(n!)^(2))`

D

`((2n)!)/((n!)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \( C_1^2 + C_3^2 + C_5^2 + \ldots + C_n^2 \) where \( n \) is an odd number, and \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: 1. **Understanding Binomial Coefficients**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). 2. **Identifying Coefficients**: For odd \( n \), the coefficients can be paired as follows: \[ C_k = C_{n-k} \] This means: - \( C_0 = C_n \) - \( C_1 = C_{n-1} \) - \( C_2 = C_{n-2} \) - \( C_3 = C_{n-3} \) - and so on. 3. **Setting Up the Equation**: We can express the sum of the squares of the odd-indexed coefficients: \[ S = C_1^2 + C_3^2 + C_5^2 + \ldots + C_n^2 \] By pairing the coefficients, we can also write: \[ S = C_0^2 + C_2^2 + C_4^2 + \ldots + C_{n-1}^2 \] 4. **Combining the Sums**: Adding both expressions for \( S \): \[ 2S = (C_0^2 + C_1^2 + C_2^2 + C_3^2 + \ldots + C_n^2) \] 5. **Finding the Total Sum of Squares**: We know from the binomial theorem that: \[ (1 + 1)^n = 2^n = C_0 + C_1 + C_2 + \ldots + C_n \] To find the sum of the squares, we can use the identity: \[ (C_0 + C_1 + \ldots + C_n)^2 = C_0^2 + C_1^2 + \ldots + C_n^2 + 2 \sum_{i < j} C_i C_j \] The sum of products \( \sum_{i < j} C_i C_j \) can be derived from \( (1 + 1)^n \) and is equal to \( 2^{2n-1} \). 6. **Calculating \( S \)**: Therefore, we can express: \[ 2^n = C_0 + C_1 + C_2 + \ldots + C_n \] Squaring gives: \[ 2^{2n} = C_0^2 + C_1^2 + \ldots + C_n^2 + 2 \cdot 2^{2n-1} \] Simplifying, we find: \[ C_0^2 + C_1^2 + \ldots + C_n^2 = 2^{2n} - 2^{2n-1} = 2^{2n-1} \] 7. **Final Calculation**: Thus, substituting back into our equation for \( S \): \[ 2S = 2^{2n-1} \implies S = \frac{2^{2n-1}}{2} = 2^{2n-2} \] ### Conclusion: The value of \( C_1^2 + C_3^2 + C_5^2 + \ldots + C_n^2 \) for odd \( n \) is: \[ \boxed{2^{2n-2}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Exercise
  1. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  2. Find the sum 3 .^(n)C(0) - 8 .^(n)C(1) + 13 .^(n)C(2) - 18 xx .^(n)C(...

    Text Solution

    |

  3. If (1 + x)^(n) = C(0) + C(1)x + C(2) x^(2) + …+ C(n) x^(n), then for n...

    Text Solution

    |

  4. If (1+x)^(n) = C(0) + C(1) xm + C(2)x^(2) + "……" + C(n)x^(n), then ...

    Text Solution

    |

  5. Find the sum 2C0+(2^3)/2C1+(2^3)/3C2+(2^4)/4C3++(2^(11))/(11)C(10)dot

    Text Solution

    |

  6. Prove that ""^(m+n)C(r) = ""^(m)C(r) + ""^(m)C(r-1) + ""^(n)C(1) +...

    Text Solution

    |

  7. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |

  8. The term independent of x in the expansion of (x-1/x)^(4) (x+1/x)^(3) ...

    Text Solution

    |

  9. if the coefficients of x^(5)" and "x^(15) in the expansion of (x^(2)+(...

    Text Solution

    |

  10. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  11. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. The coefficient of x^(n) in the expansion of (1)/((1-x)(3 -x)), is

    Text Solution

    |

  14. The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3))...

    Text Solution

    |

  15. If (r+1)t h term is the first negative term in the expansion of (1+x)^...

    Text Solution

    |

  16. The coefficient of x^(6) in the expansion of (1 + x + x^(2))^(-3) is

    Text Solution

    |

  17. The coefficient of x^n in the expansion of (1 + x+x^2+...........)^-...

    Text Solution

    |

  18. If the binomial expansion of (a +b x)^-2 is 1/4-3x+......., then (a, ...

    Text Solution

    |

  19. If C(r) = ""^(n)C(r) and (C(0) + C(1)) (C(1) + C(2)) … (C(n-1) + C(n))...

    Text Solution

    |

  20. If the third term in the expansion of (1+x)^mi s-1/8x^2, then find the...

    Text Solution

    |