Home
Class 11
MATHS
If n > 3, then x y C0-(x-1)(y-1)C1+(x-2...

If `n > 3,` then `x y C_0-(x-1)(y-1)C_1+(x-2)(y-2)C_2-(x-3)(y-3)C_3+..............+(-1)^n(x-n)(y-n)C_n,` equals

A

xyz

B

nxyz

C

#REF!

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ x y C_0 - (x-1)(y-1) C_1 + (x-2)(y-2) C_2 - (x-3)(y-3) C_3 + \ldots + (-1)^n (x-n)(y-n) C_n \] where \( C_k \) represents the binomial coefficient \( \binom{n}{k} \). ### Step 1: Rewrite the expression The expression can be rewritten as: \[ \sum_{k=0}^{n} (-1)^k (x-k)(y-k) C_k \] ### Step 2: Expand the terms We can expand \( (x-k)(y-k) \): \[ (x-k)(y-k) = xy - (x+y)k + k^2 \] ### Step 3: Substitute the expansion back into the sum Substituting this back into the summation gives: \[ \sum_{k=0}^{n} (-1)^k \left( xy - (x+y)k + k^2 \right) C_k \] This can be separated into three sums: \[ xy \sum_{k=0}^{n} (-1)^k C_k - (x+y) \sum_{k=0}^{n} (-1)^k k C_k + \sum_{k=0}^{n} (-1)^k k^2 C_k \] ### Step 4: Evaluate each sum 1. **First sum**: \[ \sum_{k=0}^{n} (-1)^k C_k = (1-1)^n = 0 \quad \text{(for } n > 0\text{)} \] 2. **Second sum**: \[ \sum_{k=0}^{n} (-1)^k k C_k = n(-1)^{n-1} \quad \text{(using the identity for } k C_k\text{)} \] However, since \( \sum_{k=0}^{n} (-1)^k C_k = 0 \), this term will also contribute 0. 3. **Third sum**: \[ \sum_{k=0}^{n} (-1)^k k^2 C_k = n(n-1)(-1)^{n-2} \quad \text{(using the identity for } k^2 C_k\text{)} \] Again, since the first sum is 0, this term will also contribute 0. ### Step 5: Combine the results Since all three sums evaluate to 0, we have: \[ xy \cdot 0 - (x+y) \cdot 0 + 0 = 0 \] ### Conclusion Thus, the entire expression simplifies to: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|13 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos

Similar Questions

Explore conceptually related problems

If n gt 3 , then xyz^(n)C_(0)-(x-1)(y-1)(z-1)""^(n)C_(1)+(x-2)(y-2)(z-2)""^(n)C_(2)- (x-3)(y-3)(z-3)""^(n)C_(3)+…..+(-1)^(n)(x-n)(y-n)(z-n)""^(n)C_(n) equals :

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The values of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum)(C_(r)+C_(S)) is

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is

The coefficient of x^r[0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^2+.... +(x+2)^(n-1) is a.^n C_r(3^r-2^n) b.^n C_r(3^(n-r)-2^(n-r)) c.^n C_r(3^r+2^(n-r)) d. none of these

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

Statement-1: (C_(0))/(2.3)- (C_(1))/(3.4) +(C_(2))/(4.5)-.............+............+(-1)^(n) (C_(n))/((n+2)(n+3))= (1)/((n+1)(n+2)) Statement-2: (C_(0))/(k)- (C_(1))/(k+1) +(C_(2))/(k+3)+............+(-1)^(n) (C_(n))/(k+n)=int_(0)^(1)x^(k-1) (1 - x)^(n) dx

The number of ways of choosing triplet (x , y ,z) such that zgtmax{x, y} and x ,y ,z in {1,2,.......... n, n+1} is (A) .^n+1C_3+^(n+2)C_3 (B) n(n+1)(2n+1)//6 (C) 1^2+2^2+..............+n^2 (D) 2(.^(n+2)C_3)-(.^(n+1)C_2)

OBJECTIVE RD SHARMA ENGLISH-BINOMIAL THEOREM AND ITS APPLCIATIONS -Exercise
  1. Find the remainder when 32^(32^32) is divided by 7

    Text Solution

    |

  2. If x^m occurs in the expansion (x+1//x^2)^(2n) , then the coefficient ...

    Text Solution

    |

  3. If n gt 1, then (1+x)^(n)-nx-1 is divisible by :

    Text Solution

    |

  4. The number of terms with integral coefficients in the expansion of (...

    Text Solution

    |

  5. The term independent of x in the expansion of (1 - x)^(2) (x + (1)/(...

    Text Solution

    |

  6. The range of the values of term independent of x in the expansion of (...

    Text Solution

    |

  7. If the sum of the coefficients in the expansion of (alpha x^(2 ) -2...

    Text Solution

    |

  8. If the coefficients of r^(th) and (r+1)^(th)terms in expansion of (3+7...

    Text Solution

    |

  9. The sum of the coefficients in the expansion of (1 - x + x^(2) - x^(3...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If n > 3, then x y C0-(x-1)(y-1)C1+(x-2)(y-2)C2-(x-3)(y-3)C3+...........

    Text Solution

    |

  12. The coefficient of x^(5) in the expansion of (1+x^(2))/(1 +x) ,|x| ...

    Text Solution

    |

  13. Find the digit at the unit's place in the number 17^1995 + 11^1995-7^1...

    Text Solution

    |

  14. Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-...

    Text Solution

    |

  15. Let (1+x)^(n)=sum(r=0)^(n)a(r)x^(r)* Then (1+(a(1))/(a(0)))(1+(a(2))/(...

    Text Solution

    |

  16. If n is even and ""^(n)C(0)lt""^(n)C(1) lt ""^(n)C(2) lt ....lt ""^(...

    Text Solution

    |

  17. The coefficient x^5 in the expansion of (2 - x + 3x^2)^6 is

    Text Solution

    |

  18. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  19. The coefficient of x^(8) y^(6) z^(4) in the expansion of (x + y + z)...

    Text Solution

    |

  20. The value of 1xx2xx3xx4+2xx3xx4xx5+3xx4xx5xx6+…+n(n +1) (n +2) (n +...

    Text Solution

    |