Home
Class 11
MATHS
One ticket is selected at ransom form 50...

One ticket is selected at ransom form 50 tickets numbered `00,01,02,…,49.` Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, is

A

`(1)/(14)`

B

`(1)/(7)`

C

`(5)/(14)`

D

`(1)/(50)`

Text Solution

Verified by Experts

The correct Answer is:
A

Consider the following events :
A=Sum of the digits on the selected ticket is 8.
B= Product of the digits on the selected ticket is zero.
There are 14 tickets having product of digits appearing on them as zero. The numbers on such tickets are 00, 01, 03, 04, 05, 06, 07, 08, 09, 10, 20, 30,40.
`therefore P(B)=(14)/(50) " and " P(A cap B)=(1)/(50)`
Required probability `=P(A//B)=(P(A cap B))/(P(B))=(1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|126 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section- II (Assertion -Reason Types MCQs)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • QUADRATIC EXPRESSIONS AND EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|50 Videos

Similar Questions

Explore conceptually related problems

One ticket is selected at random from 50 tickets numbered 00, 01, 02, ... , 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals (1) 1/14 (2) 1/7 (3) 5/14 (4) 1/50

One ticket is selected at random from 50 tickets numbered 00, 01, 02, ... , 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals (1) 1/14 (2) 1/7 (3) 5/14 (4) 1/50

One ticket is selected at random from 50 tickets numbered 00, 01, 02, ... , 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals (1) 1/14 (2) 1/7 (3) 5/14 (4) 1/50

Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.

Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.

One ticket is selected at random from 100 tickets numbered 00, 01, 02, 03,…………..99. Suppose x is the sum of the digits and y is the product of the digits, then the probability that x = 9 and y = 0 is

One ticket is selected at random from 100 tickets numbered 00,01,02, …, 99. Suppose A and B are the sum and product of the digit found on the ticket, respectively. Then P((A=7)//(B=0)) is given by

One ticket is selected at random from 100 tickets numbered 00,01,02,...,98,99. If X, a n dY denotes the sum and product of the digits on the tickets, then 57 P(X=9//Y=0) is equal to 2//19 b. 19//100 c. 1//50 d. none of these

One ticket is drawn at random from a bag containing ticket numbered 1 to 40. The probability that the selected ticket has a number which is a multiple of 5 is.

A ticket is drawn at random from a bag containing tickets numbered from 1 to 40. Find the probability that the selected ticket has a number which is a multiple of 5.

OBJECTIVE RD SHARMA ENGLISH-PROBABILITY -Chapter Test
  1. One ticket is selected at ransom form 50 tickets numbered 00,01,02,…,4...

    Text Solution

    |

  2. Two friends Aa n dB have equal number of daughters. There are three ci...

    Text Solution

    |

  3. A bag contains n white and n red balls. Pairs of balls are drawn witho...

    Text Solution

    |

  4. A bag contains 10 white and 3 black balls. Balls are drawn one by one...

    Text Solution

    |

  5. If A1,A2,....An are n independent events such that P(Ak)=1/(k+1),K=1,2...

    Text Solution

    |

  6. Three of the six vertices of a regular hexagon are chosen the rando...

    Text Solution

    |

  7. Let 0ltP(A)lt1, 0ltP(B)lt1 and P(AcupB)=P(A)+P(B)-P(A)P(B), then,

    Text Solution

    |

  8. Write the probability that a number selected at random from the set of...

    Text Solution

    |

  9. For any two independent events E1 and E2 P{(E1uuE2)nn(bar(E1)nnbar(E2)...

    Text Solution

    |

  10. If Aand B are two events than the value of the determinant choosen at ...

    Text Solution

    |

  11. The probability that a man will live 10 more years is 1//4 and the pro...

    Text Solution

    |

  12. The probability that atleast one of the events A and B occurs is 0.6. ...

    Text Solution

    |

  13. A man alternately tosses a coin and throws a die beginning with the...

    Text Solution

    |

  14. A and B are two independent events. The probability that A and B occur...

    Text Solution

    |

  15. A, B, C are any three events. If P(S) denotes the probability of S hap...

    Text Solution

    |

  16. In a class of 125 students 70 passed in Mathematics, 55 in Statistics,...

    Text Solution

    |

  17. A box contains 10 mangoes out of which 4 are rotten. Two mangoes are t...

    Text Solution

    |

  18. A lot consists of 12 good pencils , 6 with minor defects and 2 with ma...

    Text Solution

    |

  19. 3 mangoes and 3 apples are in a box. If 2 fruits are chosen at random,...

    Text Solution

    |

  20. There are 3 bags which are known to contain 2 white and 3 black, 4 ...

    Text Solution

    |

  21. Among the workers in a factory only 30% receive bonus and among those ...

    Text Solution

    |