Home
Class 11
MATHS
If A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),...

If `A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),(2b,24)]:}`, then the values of k,a,b are respectively.

A

`-6,-12,-18`

B

`-6,4,9`

C

`-6,-4,-9`

D

`-6,12,18`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given matrices: 1. **Matrix A**: \[ A = \begin{pmatrix} 0 & 2 \\ 3 & -4 \end{pmatrix} \] 2. **Matrix \( kA \)**: \[ kA = \begin{pmatrix} 0 & 3a \\ 2b & 24 \end{pmatrix} \] ### Step 1: Express \( kA \) in terms of \( k \) and \( A \) When we multiply matrix \( A \) by \( k \), we get: \[ kA = k \begin{pmatrix} 0 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 0 & 2k \\ 3k & -4k \end{pmatrix} \] ### Step 2: Set up equations by equating corresponding elements Now, we equate the corresponding elements of \( kA \) and the given matrix \( kA \): 1. From the first element (top left): \[ 0 = 0 \quad \text{(This is always true)} \] 2. From the second element (top right): \[ 2k = 3a \quad \text{(Equation 1)} \] 3. From the third element (bottom left): \[ 3k = 2b \quad \text{(Equation 2)} \] 4. From the fourth element (bottom right): \[ -4k = 24 \quad \text{(Equation 3)} \] ### Step 3: Solve for \( k \) using Equation 3 From Equation 3: \[ -4k = 24 \] Dividing both sides by -4: \[ k = -6 \] ### Step 4: Substitute \( k \) into Equations 1 and 2 to find \( a \) and \( b \) **Finding \( a \)**: Substituting \( k = -6 \) into Equation 1: \[ 2(-6) = 3a \implies -12 = 3a \] Dividing both sides by 3: \[ a = -4 \] **Finding \( b \)**: Substituting \( k = -6 \) into Equation 2: \[ 3(-6) = 2b \implies -18 = 2b \] Dividing both sides by 2: \[ b = -9 \] ### Final Values Thus, the values of \( k, a, b \) are: \[ k = -6, \quad a = -4, \quad b = -9 \] ### Summary The values of \( k, a, b \) are respectively: \[ \text{Answer: } k = -6, a = -4, b = -9 \]

To solve the problem, we start with the given matrices: 1. **Matrix A**: \[ A = \begin{pmatrix} 0 & 2 \\ 3 & -4 \end{pmatrix} \] 2. **Matrix \( kA \)**: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[(0, 2),( 3,-4)] and k A=[(0, 3a),(2b, 24)] , then the values of k ,\ a ,\ b , are respectively (a) -6, -12, -18 (b) -6, 4, 9 (c) -6, -4, -9 (d) -6, 12, 18

If A=[{:(0,2),(3,-4):}] and k A =[{:(0,3a),(2b,24):}], then find the value of b-a-k.

if A=[{:(4,2),(-3,2),(1,3):}]and B=[{:(-1,3),(0,2),(2,-4):}], then find 3A-4B.

Given A=[{:(,3,0),(,0,4):}], B=[{:(,a,b),(,0,c):}] and AB=A+B, find the values of a,b and c.

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

If A=[[2,4],[-1,k]] and A^2=0 , rhen find the value of k

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),(2b,24)]:}, then the values of...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |