Home
Class 11
MATHS
If A=[(1,-1),(2,-1)],B=[(a,1),(b,-1)]and...

If `A=[(1,-1),(2,-1)],B=[(a,1),(b,-1)]and(A+B)^(2)=A^(2)+B^(2)` , the value of a + b is

A

`a=4,b=1`

B

`a=1b=4`

C

`a=0,b=4`

D

`a=2,b=4`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`{:A+B=[(a+1,0),(b+2,-2)]:}`
`{:A^2=[(1,-1),(2,-1)][(1,-1),(2,-1)]=[(-1,0),(0,-1)]:}`
`{:B^2=[(a,1),(b,-1)][(a,1),(b,-1)]=[(a^2+b,a-1),(ab-b,b+1)]:}`
`{:(A+B)^2=[(a+1,0),(b+2,-2)][(a+1,0),(b+2,-2)]=[((a+1)^2,0),((a-1)(b+2),4)]:}`
`:. (A+B)^2=A^2+B^2`
`rArr{:[((a+1)^2,0),((a-1)(b+2),4)]=[(-1,0),(0,-1)]+[(a^2+b,a-1),(ab-b,b+1)]:}`
`rArr{:[((a+1)^2,0),((a-1)(b+2),4)]=[(a^2+b-1,a-1),(ab-b,b)]:}`
`rArr a-1=0,b=4,(a+1)^2=a^2+b-1,(a-1)(b+2)=a-b`
`rArr a=1and b=4`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

If A=[(1,-1), (2,-1)],B=[(a,1),(b,-1)]a n d(A+B)^2=A^2+B^2,fin daa n dbdot

If A=[(1,-1),(2,-1)],B = [(x,1),(4,-1)] and A^2+B^2=(A+B)^2 find the value of x. State, whether A^2 + B^2 and (A + B)^2 are always equal or not.

If A=[1-1 2-1] , B=[a1b-1] and (A+B)^2=A^2+B^2 , then values of a and b are a=4 , b=1 (b) a=1 , b=4 (c) a=0 , b=4 (d) a=2 , b=4

If A=[[1,-1],[ 2,-1]] and B=[[a,1],[b,-1]] and (A+B)^2=A^2+B^2, then find the value of a and b .

If A=[[1,-1],[ 2, 1]],B=[[a,1],[b,-1]]a n d(A+B)^2=A^2+B^2+2A B ,t h e n a. a=-1 b. a=1 c. b=2 d. b=-2

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

If (2a)/b =1/2 , what is the value of b/a ?

If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If A=[(1,-1),(2,-1)],B=[(a,1),(b,-1)]and(A+B)^(2)=A^(2)+B^(2) , the va...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |