Home
Class 11
MATHS
The matrix {:A=[(1,-3,-4),(-1,3,4),(1,-3...

The matrix `{:A=[(1,-3,-4),(-1,3,4),(1,-3,-4)]:}`is nilpotent of index

A

2

B

3

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To determine the index of the nilpotent matrix \( A \), we need to find the smallest positive integer \( n \) such that \( A^n = 0 \) (the null matrix). Given the matrix: \[ A = \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we perform matrix multiplication of \( A \) with itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{pmatrix} \] Calculating each element of the resulting matrix: 1. **First row, first column**: \[ 1 \cdot 1 + (-3) \cdot (-1) + (-4) \cdot 1 = 1 + 3 - 4 = 0 \] 2. **First row, second column**: \[ 1 \cdot (-3) + (-3) \cdot 3 + (-4) \cdot (-3) = -3 - 9 + 12 = 0 \] 3. **First row, third column**: \[ 1 \cdot (-4) + (-3) \cdot 4 + (-4) \cdot (-4) = -4 - 12 + 16 = 0 \] 4. **Second row, first column**: \[ (-1) \cdot 1 + 3 \cdot (-1) + 4 \cdot 1 = -1 - 3 + 4 = 0 \] 5. **Second row, second column**: \[ (-1) \cdot (-3) + 3 \cdot 3 + 4 \cdot (-3) = 3 + 9 - 12 = 0 \] 6. **Second row, third column**: \[ (-1) \cdot (-4) + 3 \cdot 4 + 4 \cdot (-4) = 4 + 12 - 16 = 0 \] 7. **Third row, first column**: \[ 1 \cdot 1 + (-3) \cdot (-1) + (-4) \cdot 1 = 1 + 3 - 4 = 0 \] 8. **Third row, second column**: \[ 1 \cdot (-3) + (-3) \cdot 3 + (-4) \cdot (-3) = -3 - 9 + 12 = 0 \] 9. **Third row, third column**: \[ 1 \cdot (-4) + (-3) \cdot 4 + (-4) \cdot (-4) = -4 - 12 + 16 = 0 \] Thus, we find that: \[ A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Conclusion Since \( A^2 = 0 \), the matrix \( A \) is nilpotent of index 2.

To determine the index of the nilpotent matrix \( A \), we need to find the smallest positive integer \( n \) such that \( A^n = 0 \) (the null matrix). Given the matrix: \[ A = \begin{pmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

The matrix [(2,lambda,-4),(-1,3,4),(1,-2,-3)] is non singular , if :

The rank of the matrix {:A=[(1,2,3),(4,5,6),(3,4,5)]:} is

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

Express the matrix A=[(2,4,-6),(7,3,5),(1,-2,4)] is the sum of a symmetric and skew symmetric matrix.

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

The matrix A=1/3{:[(1,2,2),(2,1,-2),(-2,2,-1)]:} is 1) orthogonal 2) involutory 3) idempotent 4) nilpotent

show that [(1,1,3),(5,2,6),(-2,-1,-3)]=A is nilpotent matrix of order 3.

Expess the matrix A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}] as a sum of symmetic and skew symmetric matrices.

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. The matrix {:A=[(1,-3,-4),(-1,3,4),(1,-3,-4)]:}is nilpotent of index

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |