Home
Class 11
MATHS
Let A be the set of all 3xx3 symmetric m...

Let A be the set of all `3xx3` symmetric matrices all of whose either 0 or 1. Five of these entries are 1 and four of them are 0.
The number of matrices in A is

A

12

B

6

C

9

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

A symmetric matrix is symmetric about its diagonal. So, there are even number of 1 and even number of 0 as off diagonal entries. Consequently, there can be either three 1 in the diagonal or one 1 and two zeros. Thus, we have the following cases:
CASE I When diagonal elements are 1,1,1.
In this case, we have
Number of symmetric matrices
= Number of arrangements of 1,0,0 as elements above the diagonal
`=(3!)/(2!)=3`
CASE II When diagonal elements are 1,0,0 ltbr. In this case, we have ltbRgt Number of symmetric matrices
=(Number of arrangements of 1,0,0 as entries above the diagonal)
`=(3!)/(2!)xx(3!)/(2!)=9`
`:. " Total number of matrices in " A=3+9=12`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Let A be the set of all 3xx3 symmetric matrices all of whose either 0 or 1. Five of these entries are 1 and four of them are 0. The number of matrices A in A for which the system of linear equations A[(x),(y),(z)]=[(1),(0),(0)] is inconsistent is

Let A be the set of all 3 xx 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0. The number of matrices in A is

Let A be the set of all 3xx3 symetric matrices whose entries are either 0 or 1. The number of elements is set A, is

Let A be the set of all 3xx3 matrices of whose entries are either 0 or 1. The number of elements is set A, is

Let A be the set of all 3xx3 skew-symmetri matrices whose entries are either -1,0,or1. If there are exactly three 0s three 1s, and there (-1)' s , then the number of such matrices is __________.

Let A be the set of all 3xx3 skew-symmetri matrices whose entries are either -1,0,or1. If there are exactly three 0s three 1s, and there (-1)' s , then the number of such matrices is __________.

The number of all possible matrices of order 3 x 3 with each entry 0 or 1 is

The number of all possible matrices of order 3 xx3 with each entry 0 or 1 is:

If the entries in a 3xx3 determinant are either 0 or 1, then the greatest value of their determinants is

Let A be the set of all 2 xx 2 matrices whose determinant values is 1 and B be the set of all 2 xx 2 matrices whose determinant value is -1 and each entry of matrix is either 0 or 1, then

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. Let A be the set of all 3xx3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |