Home
Class 11
MATHS
{:A=[(1,2,2),(2,1,-2),(a,2,b)]:} is a ma...

`{:A=[(1,2,2),(2,1,-2),(a,2,b)]:}` is a matrix and `A A^T=9I`, then the ordered pair (a,b) is equal to

A

(2,1)

B

(-2,-1)

C

(2,-1)

D

(-2,1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ordered pair (a, b) such that the equation \( A A^T = 9I \) holds true for the matrix \( A \). ### Step-by-Step Solution: 1. **Define the Matrix A**: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \] 2. **Find the Transpose of Matrix A**: The transpose of matrix \( A \), denoted as \( A^T \), is obtained by swapping rows and columns: \[ A^T = \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix} \] 3. **Multiply A and A^T**: We need to compute the product \( A A^T \): \[ A A^T = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix} \] - **First Row Calculation**: - First element: \( 1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2 = 1 + 4 + 4 = 9 \) - Second element: \( 1 \cdot 2 + 2 \cdot 1 + 2 \cdot -2 = 2 + 2 - 4 = 0 \) - Third element: \( 1 \cdot a + 2 \cdot 2 + 2 \cdot b = a + 4 + 2b \) - **Second Row Calculation**: - First element: \( 2 \cdot 1 + 1 \cdot 2 + -2 \cdot 2 = 2 + 2 - 4 = 0 \) - Second element: \( 2 \cdot 2 + 1 \cdot 1 + -2 \cdot -2 = 4 + 1 + 4 = 9 \) - Third element: \( 2 \cdot a + 1 \cdot 2 + -2 \cdot b = 2a + 2 - 2b \) - **Third Row Calculation**: - First element: \( a \cdot 1 + 2 \cdot 2 + b \cdot 2 = a + 4 + 2b \) - Second element: \( a \cdot 2 + 2 \cdot 1 + b \cdot -2 = 2a + 2 - 2b \) - Third element: \( a \cdot a + 2 \cdot 2 + b \cdot b = a^2 + 4 + b^2 \) Thus, we have: \[ A A^T = \begin{pmatrix} 9 & 0 & a + 4 + 2b \\ 0 & 9 & 2a + 2 - 2b \\ a + 4 + 2b & 2a + 2 - 2b & a^2 + 4 + b^2 \end{pmatrix} \] 4. **Set Up the Equation**: Since \( A A^T = 9I \), we have: \[ A A^T = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \] This gives us the following equations: - \( a + 4 + 2b = 0 \) (1) - \( 2a + 2 - 2b = 0 \) (2) - \( a^2 + 4 + b^2 = 9 \) (3) 5. **Solve the System of Equations**: From equation (1): \[ a + 2b = -4 \quad \text{(Rearranging equation (1))} \] From equation (2): \[ 2a - 2b = -2 \quad \Rightarrow \quad a - b = -1 \quad \text{(Dividing by 2)} \] Now we have two equations: - \( a + 2b = -4 \) (4) - \( a - b = -1 \) (5) From equation (5), we can express \( a \) in terms of \( b \): \[ a = b - 1 \] Substitute \( a \) in equation (4): \[ (b - 1) + 2b = -4 \quad \Rightarrow \quad 3b - 1 = -4 \quad \Rightarrow \quad 3b = -3 \quad \Rightarrow \quad b = -1 \] Substitute \( b \) back into equation (5): \[ a - (-1) = -1 \quad \Rightarrow \quad a + 1 = -1 \quad \Rightarrow \quad a = -2 \] 6. **Final Ordered Pair**: The ordered pair \( (a, b) \) is: \[ (a, b) = (-2, -1) \]

To solve the problem, we need to find the ordered pair (a, b) such that the equation \( A A^T = 9I \) holds true for the matrix \( A \). ### Step-by-Step Solution: 1. **Define the Matrix A**: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

if A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

If A=[(1 2 2)[, (2 1 -2),(a 2 b)] is a matrix satisfying A A^T=9I_3 , then find the values of a and b .

If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , where I is 3xx3 identity matrix, then the ordered pair (a, b) is equal to : (1) (2,-1) (2) (-2,""1) (3) (2, 1) (4) (-2,-1)

If a matrix A is such that 3A^3 +2A^2+5A+I= 0 , then A^(-1) is equal to

In a Delta ABC a/b=2+sqrt(2) " and " angle C = 60 ^@ Then the ordered pair (angle A , angle B) is equal to :

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

If A=[[t,t+1],[t-1,t]] is a matrix such that A A^(T) = I_(2) Then the trace of the matrix must be

If M=[{:(,1,2),(,2,1):}] and I is a unit matrix of the same order as that of M, show that M^2=2M+3I

If A=[{:(,2,5),(,1,3):}], B=[{:(,4,-2),(,-1,3):}] and I is the identify matric of the same order and A^(t) is the transpose of matrix A, find A^(t) B+BI .

If ("lim")_(xvec0)((1+a^3)+8e^(1/x))/(1+(2+b+b^2)e^(1/x))=2, where a ,b in R , then the possible ordered pair (a,b) is (2,-2) (b) (1,-2) (1,1) (d) (-1,1)

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. {:A=[(1,2,2),(2,1,-2),(a,2,b)]:} is a matrix and A A^T=9I, then the or...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |