Home
Class 11
MATHS
If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] t...

If `A=[(1,0),(1,1)] and I=[(1,0),(0,1)]` then which one of the following holds for all `nge1` by the principle of mathematica induction? (A) `A^n=2^(n-1) A+(n-1)I` (B) `A^n=nA+(n-1) I` (C) `A^n=2^(n-1) A-(n-1)I` (D) `A^n=nA-(n-1) AI`

A

`A^n=n^(n-1)A+(n-1)I`

B

`A=nA+(n-1)I`

C

`A^n=2^(n-1)A-(n-1)I`

D

`A=nA-(n-1)I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to verify which of the given options holds true for all \( n \geq 1 \) using the principle of mathematical induction. We start with the matrices: \[ A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating this gives: \[ A^2 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 1 & 1 \cdot 0 + 0 \cdot 1 \\ 1 \cdot 1 + 1 \cdot 1 & 1 \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] Calculating this gives: \[ A^3 = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 1 & 1 \cdot 0 + 0 \cdot 1 \\ 2 \cdot 1 + 1 \cdot 1 & 2 \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \] ### Step 3: Identify the Pattern From our calculations, we can see a pattern emerging: - \( A^1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \) We can generalize this pattern as: \[ A^n = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \] ### Step 4: Verify Each Option Now we will check each option to see which one matches our derived formula. 1. **Option (A)**: \( A^n = 2^{n-1} A + (n-1)I \) Substituting \( A \) and \( I \): \[ 2^{n-1} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + (n-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^{n-1} + n - 1 & 0 \\ 2^{n-1} + n - 1 & 2^{n-1} \end{pmatrix} \] This does not match \( A^n \). 2. **Option (B)**: \( A^n = nA + (n-1)I \) Substituting: \[ n \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + (n-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} n + n - 1 & 0 \\ n & n - 1 \end{pmatrix} \] This does not match \( A^n \). 3. **Option (C)**: \( A^n = 2^{n-1} A - (n-1)I \) Substituting: \[ 2^{n-1} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} - (n-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^{n-1} - (n - 1) & 0 \\ 2^{n-1} & 2^{n-1} - (n - 1) \end{pmatrix} \] This does not match \( A^n \). 4. **Option (D)**: \( A^n = nA - (n-1)I \) Substituting: \[ n \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} - (n-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} n - (n - 1) & 0 \\ n & n - 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \] This matches \( A^n \). ### Conclusion The correct option is **(D)**: \( A^n = nA - (n-1)I \).

To solve the problem, we need to verify which of the given options holds true for all \( n \geq 1 \) using the principle of mathematical induction. We start with the matrices: \[ A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Prove by the principle of mathematical induction that for all n in N : 1+4+7++(3n-2)=1/2n(3n-1)

Prove the following by using the principle of mathematical induction for all n in N : 1^2+3^2+5^2+dotdotdot+(2n-1)^2=(n(2n-1)(2n+1))/3

Prove the following by using the principle of mathematical induction for all n in N : 1 + 2 + 3 + ... + n <1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N : (1+1/1)(1+1/2)(1+1/3)...(1+1/n)=(n+1)

Prove the following by using the principle of mathematical induction for all n in N : (1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/(n^2))=(n+1)^2

Prove the following by using the principle of mathematical induction for all n in N : 1. 2. 3 + 2. 3. 4 + .. . + n(n + 1) (n + 2)=(n(n+1)(n+2)(n+3))/4

Prove the following by using the principle of mathematical induction for all n in N : 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)+...+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

Prove by the principle of mathematical induction that for all n belongs to N :\ 1/(1. 3)+1/(3.5)+1/(5.7)++1/((2n-1)(2n+1))=n/(2n+1)

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

If A=[1 1 1 0 1 1 0 0 1] , then use the principle of mathematical induction to show that A^n=[1 n n(n+1)//2 0 1 n 0 0 1] for every positive integer n .

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |