Home
Class 11
MATHS
If {:S=[(a,b),(c,d)]:}, then adj S is eq...

If `{:S=[(a,b),(c,d)]:}`, then adj S is equal to

A

`{:[(-d,-b),(-c,a)]:}`

B

`{:[(d,-b),(-c,a)]:}`

C

`{:[(d,b),(c,a)]:}`

D

`{:[(d,c),(b,a)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), we will follow the properties of the adjoint of a 2x2 matrix. ### Step-by-Step Solution: 1. **Identify the Matrix**: We have the matrix \( S \) defined as: \[ S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] 2. **Recall the Property of Adjoint**: For a 2x2 matrix \( \begin{pmatrix} p & q \\ r & s \end{pmatrix} \), the adjoint (or adjugate) is given by: \[ \text{adj} = \begin{pmatrix} s & -q \\ -r & p \end{pmatrix} \] This means we interchange the diagonal elements and change the signs of the off-diagonal elements. 3. **Apply the Property**: - Interchange the diagonal elements \( a \) and \( d \): - The new diagonal elements will be \( d \) (in place of \( a \)) and \( a \) (in place of \( d \)). - Change the signs of the off-diagonal elements \( b \) and \( c \): - The new off-diagonal elements will be \( -b \) and \( -c \). Therefore, the adjoint of \( S \) becomes: \[ \text{adj}(S) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] 4. **Final Result**: Thus, the adjoint of the matrix \( S \) is: \[ \text{adj}(S) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \]

To find the adjoint of the matrix \( S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), we will follow the properties of the adjoint of a 2x2 matrix. ### Step-by-Step Solution: 1. **Identify the Matrix**: We have the matrix \( S \) defined as: \[ S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, (s-a)(s-b)= s(s-c), then angle C is equal to

If A and B are two invertible matrices of the same order, then adj (AB) is equal to

If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T) , then 5a+b is equal to

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

Let A be a non-singular square matrix of order 3 xx 3. Then |adj A| is equal to (A) |A| (B) |A|^2 (C) |A|^3 (D) 3|A|

If A={a,b},B={c,d},C={d,e} , then {(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)} is equal to

If A={a,b},B={c,d},C={d,e} , then {(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)} is equal to

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

In a A B C ,\ A D is the bisector of the angle A meeting B C at Ddot If I is the incentre of the triangle, then A I\ : D I is equal to - (s in B+s in C):\ s in A (b) (cos B+cos C): cos A cos((B-C)/2):cos((B+C)/2) (d) sin((B-C)/2):sin((B+C)/2)

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If {:S=[(a,b),(c,d)]:}, then adj S is equal to

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |