Home
Class 11
MATHS
A square non-singular matrix A satisfies...

A square non-singular matrix A satisfies the equation `x^(2)-x+2=0`, then `A^(-1)` is equal to

A

I-A

B

`1/2(I-A)`

C

`I+A`

D

`1/2(I+A)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`A^2-A +2I =0` ltbRgt `rArr A-A^2=2I`
`A(I-A)rArr A{1/2(I-A)}=IrArrA^(-1)=1/2(I-A)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

If A is a non - singular matrix then

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

If A,B and C arae three non-singular square matrices of order 3 satisfying the equation A^(2)=A^(-1) let B=A^(8) and C=A^(2) ,find the value of det (B-C)

If a non-singular matrix and A^(T) denotes the tranpose of A, then

Show that the matrix A=[2 3 1 2] satisfies the equation A^2-4A+I=0

Let A be a non - singular matrix of order 3 such that Aadj (3A)=5A A^(T) , then root3(|A^(-1)|) is equal to

If a 3 xx 3 square matrix satisfies A^(3) -23A - 40 I = 0, " then " A^(-1) equals

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. A square non-singular matrix A satisfies the equation x^(2)-x+2=0, the...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |