Home
Class 11
MATHS
If for a matrix A, absA=6and adj A={:[(1...

If for a matrix A, `absA=6and adj A=`{:[(1,-2,4),(4,1,1),(-1,k,0)]:}`, then k is equal to

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the given problem, we will follow these steps: ### Step 1: Write down the given information We are given: - \( \text{det}(A) = 6 \) - \( \text{adj}(A) = \begin{pmatrix} 1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0 \end{pmatrix} \) ### Step 2: Use the property of determinants The property of the adjoint of a matrix states that: \[ \text{det}(\text{adj}(A)) = \text{det}(A)^{n-1} \] where \( n \) is the order of the matrix. Here, \( n = 3 \) (since \( A \) is a \( 3 \times 3 \) matrix). Thus, we have: \[ \text{det}(\text{adj}(A)) = 6^{3-1} = 6^2 = 36 \] ### Step 3: Calculate the determinant of adjoint matrix To find \( \text{det}(\text{adj}(A)) \), we will calculate the determinant of the matrix: \[ \text{adj}(A) = \begin{pmatrix} 1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0 \end{pmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(B) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( B = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). Here: - \( a = 1, b = -2, c = 4 \) - \( d = 4, e = 1, f = 1 \) - \( g = -1, h = k, i = 0 \) Calculating the determinant: \[ \text{det}(\text{adj}(A)) = 1 \cdot (1 \cdot 0 - 1 \cdot k) - (-2) \cdot (4 \cdot 0 - 1 \cdot -1) + 4 \cdot (4 \cdot k - 1 \cdot -1) \] \[ = 1 \cdot (0 - k) + 2 \cdot (0 + 1) + 4 \cdot (4k + 1) \] \[ = -k + 2 + 16k + 4 \] \[ = 15k + 6 \] ### Step 4: Set the determinant equal to 36 Now we set the expression for the determinant equal to 36: \[ 15k + 6 = 36 \] ### Step 5: Solve for \( k \) Subtract 6 from both sides: \[ 15k = 30 \] Now divide by 15: \[ k = 2 \] ### Final Answer Thus, the value of \( k \) is \( \boxed{2} \).

To find the value of \( k \) in the given problem, we will follow these steps: ### Step 1: Write down the given information We are given: - \( \text{det}(A) = 6 \) - \( \text{adj}(A) = \begin{pmatrix} 1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0 \end{pmatrix} \) ### Step 2: Use the property of determinants ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A=|{:(1,4,5),(3,2,6),(0,1,0):}| , then evaluate A. (adj. A).

First row of a matrix A is [1,3,2] . If adj A=[(-2,4,alpha),(-1,2,1),(3alpha,-5,-2)] , then a det (A) is

If A=[(1,-3), (2,k)] and A^(2) - 4A + 10I = A , then k is equal to

If matrix A=[(1,-1),(-1,1)] and A^2=kA then write the value of k.

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

For a matrix A of order 3xx3 where A=[(1,4,5),(k,8,8k-6),(1+k^2, 8k+4, 2k+21)] (A) rank of A=2 for k=-1 (B) rank of A=1 for k=-1 (C) rank of A=2 for k=2 (D) rank of A=1 for k=2

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. If for a matrix A, absA=6and adj A={:[(1,-2,4),(4,1,1),(-1,k,0)]:}, th...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |