Home
Class 11
MATHS
The matrix A=1/3{:[(1,2,2),(2,1,-2),(-2,...

The matrix `A=1/3{:[(1,2,2),(2,1,-2),(-2,2,-1)]:}` is 1) orthogonal 2) involutory 3) idempotent 4) nilpotent

A

orthogonal

B

involutory

C

idempotent

D

nilpotent

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the matrix \( A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \), we will check if it is orthogonal, involutory, idempotent, or nilpotent. ### Step 1: Check if \( A \) is Orthogonal A matrix \( A \) is orthogonal if \( A A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. 1. **Find the transpose \( A^T \)**: \[ A^T = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix} \] 2. **Calculate \( A A^T \)**: \[ A A^T = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix} \] - Calculate each element of the resulting matrix. 3. **Result of \( A A^T \)**: After performing the multiplication, we find: \[ A A^T = \frac{1}{9} \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \] Thus, \( A \) is orthogonal. ### Step 2: Check if \( A \) is Involutory A matrix \( A \) is involutory if \( A^2 = I \). 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \] - Perform the multiplication and check if it equals \( I \). 2. **Result of \( A^2 \)**: After performing the multiplication, we find that \( A^2 \neq I \). Therefore, \( A \) is not involutory. ### Step 3: Check if \( A \) is Idempotent A matrix \( A \) is idempotent if \( A^2 = A \). 1. **Using the previous result**: Since we already calculated \( A^2 \) and found it does not equal \( A \), we conclude that \( A \) is not idempotent. ### Step 4: Check if \( A \) is Nilpotent A matrix \( A \) is nilpotent if \( A^m = 0 \) for some positive integer \( m \). 1. **Using the previous result**: Since \( A^2 \neq 0 \) and \( A \) is not a zero matrix, \( A \) is not nilpotent. ### Conclusion The only property that holds for the matrix \( A \) is that it is orthogonal. ### Final Answer 1) Orthogonal

To determine the properties of the matrix \( A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix} \), we will check if it is orthogonal, involutory, idempotent, or nilpotent. ### Step 1: Check if \( A \) is Orthogonal A matrix \( A \) is orthogonal if \( A A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. 1. **Find the transpose \( A^T \)**: \[ A^T = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|57 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

The matrix {:A=[(1,-3,-4),(-1,3,4),(1,-3,-4)]:} is nilpotent of index

STATEMENT -1 : A=(1)/(3){:[(1,-2,2),(-2,1,2),(-2,-2,-1)]:} is an orthogonal matrix and STATEMENT-2 : If A and B are otthogonal, then AB is also orthogonal.

show that the matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is involutory.

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

The rank of the matrix {:[(1,2,3,0),(2,4,3,2),(3,2,1,3),(6,8,7,5)]:} , is

The rank of the matrix [(1,2,3),(lambda , 2 , 4),(2,-3,1)] is 3 if :

If A=[(1,1,2),(5,2,6),(-2,-1,-3)] then A is (A) nilpotent (B) idempotent (C) symmetric (D) none of these

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Chapter Test
  1. The matrix A=1/3{:[(1,2,2),(2,1,-2),(-2,2,-1)]:} is 1) orthogonal 2) ...

    Text Solution

    |

  2. If A is an invertible matrix and B is a matrix, then

    Text Solution

    |

  3. What is the order of the product [x" "y" "z][{:(a,h,g),(h,b,f),(g,f,c)...

    Text Solution

    |

  4. If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1), is

    Text Solution

    |

  5. The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

    Text Solution

    |

  6. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  7. If {:X=[(3,-4),(1,-1)]:}, the value of X^n is equal to

    Text Solution

    |

  8. If {:A=[(5,2),(3,1)]:}," then "A^(-1)=

    Text Solution

    |

  9. For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  10. If {:A=[(3,1),(-1,2)]:}," then "A^(2)=

    Text Solution

    |

  11. if A=[(4,x+2),(2x-3,x+1)] is symmetric, then x is equal to

    Text Solution

    |

  12. If A+B={:[(1,0),(1,1)]:}andA-2B={:[(-1,1),(0,-1)]:}, then A is equal t...

    Text Solution

    |

  13. {:[(-6,5),(-7,6)]^(-1)=:}

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If I3 is the identily matrix of order 3, then (I3)^(-1)=

    Text Solution

    |

  16. Let a ,b , c be real numbers. The following system of equations in x ,...

    Text Solution

    |

  17. If A and B are two matrices such that A+B and AB are both defind, then

    Text Solution

    |

  18. A and B are tow square matrices of same order and A' denotes the tran...

    Text Solution

    |

  19. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  20. The system of linear equations x+y+z=2,2x+y-z=3, 3x+2y+kz=4 has a uniq...

    Text Solution

    |

  21. If A and B ar square matrices of order 3 such that |A|=-1|B|=3, then |...

    Text Solution

    |