Home
Class 11
MATHS
If {:[(a,b^3),(2,0)]=[(1,8),(2,0)]," th...

If `{:[(a,b^3),(2,0)]=[(1,8),(2,0)]," then " [(a,b),(2,0)]_()^-1:}=`

A

`{:[(0,-2),(-2,1)]:}`

B

`{:[(1,0),(0,1)]:}`

C

`{:[(0,-8),(-2,1)]:}`

D

`{:[(0,1//2),(1//2,-1//4)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the inverse of the matrix \(\begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix}\) given that \(\begin{pmatrix} a & b^3 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 8 \\ 2 & 0 \end{pmatrix}\). ### Step 1: Equate the matrices Since the two matrices are equal, we can equate the corresponding elements: \[ a = 1 \quad \text{and} \quad b^3 = 8 \] ### Step 2: Solve for \(b\) From the equation \(b^3 = 8\), we can find \(b\): \[ b = \sqrt[3]{8} = 2 \] ### Step 3: Substitute \(a\) and \(b\) into the matrix Now that we have \(a\) and \(b\), we can substitute these values into the matrix: \[ \begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \] ### Step 4: Find the inverse of the matrix To find the inverse of the matrix \(\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}\), we use the formula for the inverse of a 2x2 matrix: \[ \text{If } A = \begin{pmatrix} x & y \\ w & z \end{pmatrix}, \text{ then } A^{-1} = \frac{1}{(xz - wy)} \begin{pmatrix} z & -y \\ -w & x \end{pmatrix} \] Here, \(x = 1\), \(y = 2\), \(w = 2\), and \(z = 0\). ### Step 5: Calculate the determinant First, we calculate the determinant: \[ \text{det}(A) = (1)(0) - (2)(2) = 0 - 4 = -4 \] ### Step 6: Apply the inverse formula Now we can apply the inverse formula: \[ A^{-1} = \frac{1}{-4} \begin{pmatrix} 0 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \(\begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix}\) is: \[ \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{pmatrix} \]

To solve the given problem, we need to find the inverse of the matrix \(\begin{pmatrix} a & b \\ 2 & 0 \end{pmatrix}\) given that \(\begin{pmatrix} a & b^3 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 8 \\ 2 & 0 \end{pmatrix}\). ### Step 1: Equate the matrices Since the two matrices are equal, we can equate the corresponding elements: \[ a = 1 \quad \text{and} \quad b^3 = 8 \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[(2,2),(-3,2)] and B=[(0,-1),(1,0)] then (B^-1A^-1)^-1= (A) [(2,-2),(2,3)] (B) [(3,-2),(2,3)] (C) 1/10 [ (2,2),(-2,3)] (D) 1/10 [(3,-2),(-2,2)]

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]

If A=[(1,0),(2,0)] and B=[(0,0),(1,12)] then= (A) AB=0, BA=0 (B) AB=0,BA!=0 (C) AB!=0,BA=0 (D) AB!=0,BA!=0

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Section I - Solved Mcqs
  1. The elemant in the first row and third coumn of the inverse of the mat...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. If {:[(a,b^3),(2,0)]=[(1,8),(2,0)]," then " [(a,b),(2,0)]()^-1:}=

    Text Solution

    |

  4. If A is a square matrix such that A^2-A+I =0, then the inverse of A is

    Text Solution

    |

  5. If A a 3xx3 amtrix and B is its adjoint such that |B| = 64, then |A| i...

    Text Solution

    |

  6. If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| is an orthogonal matrix, then ...

    Text Solution

    |

  7. If A=[{:(omega,0),(0,omega):}], where omega is cube root of unity, the...

    Text Solution

    |

  8. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  9. if A=[{:(0,1,-1),(2,1,3),(3,2,1):}]then (A(adjA)A^-1)A is equal to

    Text Solution

    |

  10. If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equa...

    Text Solution

    |

  11. If A is an invertible matrix of order 3xx3 such that |A|=2 . Then, ...

    Text Solution

    |

  12. If A and B are squre 3xx3 such that A is an orthogonal matrix and B is...

    Text Solution

    |

  13. If A=|[alpha,2], [2,alpha]| and |A|^3=125 , then the value of alpha ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If A=[(1,0,0),(0,1,1),(0,-2,4)] , 6A^(-1)=A^2+cA+dI, then (c,d) is :

    Text Solution

    |

  16. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  17. If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse o...

    Text Solution

    |

  18. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  19. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  20. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |