Home
Class 11
MATHS
Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U...

Let `{:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U_1,U_2,U_3` be column matrices satisfying `{:AU_1=[(1),(0),(0)],AU_2=[(2),(3),(6)],AU_3=[(2),(3),(1)]:}`.If U is `3xx3` matrix whose columns are `U_1,U_2,U_3," then "absU=`

A

3

B

-3

C

`3//2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A

Let `{:U_1[(a),(b),(c)],U_2[(p),(q),(r)],andU_3[(x),(y),(z)]:}` Then
`{:AU_1[(1),(0),(0)]rArr[(a),(2a+b),(3a+2b+c)]=[(1),(0),(0)]rArra=1,b=-2, c=1:}`
`{:AU_2[(2),(3),(0)]rArr[(p),(2p+q),(3p+2q+r)]=[(2),(3),(0)]rArrp=2,q=-1,r=4:}`
and,
`{:AU_2[(2),(3),(1)]rArr[(x),(2x+y),(3x+2y+z)]=[(2),(3),(1)]rArrx=2,y=-1,z=-3:}`
`:. U{:abs((U_1,U_2,U_3))=[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}`
`rArr absU={:abs((1,2,2),(-2,-1,-1),(1,-4,-3)) =abs((1,2,0),(-2,-1,0),(1,-4,1)):}" Applying " C_3 to C_3-C_2`
`rArr absU=3`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let A=((1,0,0),(2,1,0),(3,2,1)) . If u_(1) and u_(2) are column matrices such that Au_(1)=((1),(0),(0)) and Au_(2)=((0),(1),(0)) , then u_(1)+u_(2) is equal to :

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The value of det(B^(-1)) , is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)

If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse of U is

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Section I - Solved Mcqs
  1. about to only mathematics

    Text Solution

    |

  2. If A=[(1,0,0),(0,1,1),(0,-2,4)] , 6A^(-1)=A^2+cA+dI, then (c,d) is :

    Text Solution

    |

  3. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  4. If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse o...

    Text Solution

    |

  5. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  6. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  7. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  8. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  9. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  10. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  11. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  12. The value of a,b,c when [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal , ...

    Text Solution

    |

  13. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |

  14. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |

  15. Find the inverse of [0 1-1 4-3 4 3-3 4]

    Text Solution

    |

  16. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  17. If A=([a(i j)])(4xx4,) such that a(i j)={2,w h e ni=j0,w h e ni!=j ,t ...

    Text Solution

    |

  18. If A is skew-symmetric matrix of order 2 and B=[(1,4),(2,9)] and c[(9...

    Text Solution

    |

  19. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  20. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |