Home
Class 11
MATHS
If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, ...

If `{:A=alpha[(1,1+i),(1-i,-1)]:}a in R`, is a unitary matrix then `alpha^2` is

A

`1/2`

B

`1/3`

C

`1/4`

D

`2/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \alpha^2 \) given that the matrix \[ A = \alpha \begin{pmatrix} 1 & 1+i \\ 1-i & -1 \end{pmatrix} \] is a unitary matrix. A matrix \( A \) is unitary if \[ A A^* = I \] where \( A^* \) is the conjugate transpose of \( A \) and \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Write down the matrix \( A \)**: \[ A = \alpha \begin{pmatrix} 1 & 1+i \\ 1-i & -1 \end{pmatrix} \] 2. **Find the conjugate transpose \( A^* \)**: To find \( A^* \), we first take the transpose of \( A \) and then take the complex conjugate of each element. - The transpose of \( A \) is: \[ A^T = \begin{pmatrix} 1 & 1-i \\ 1+i & -1 \end{pmatrix} \] - The complex conjugate of \( A^T \) is: \[ A^* = \begin{pmatrix} 1 & 1-i \\ 1+i & -1 \end{pmatrix} \] Therefore, \[ A^* = \alpha \begin{pmatrix} 1 & 1-i \\ 1+i & -1 \end{pmatrix} \] 3. **Set up the equation for unitarity**: Since \( A \) is unitary, we have: \[ A A^* = I \] Substituting \( A \) and \( A^* \): \[ \left( \alpha \begin{pmatrix} 1 & 1+i \\ 1-i & -1 \end{pmatrix} \right) \left( \alpha \begin{pmatrix} 1 & 1-i \\ 1+i & -1 \end{pmatrix} \right) = I \] 4. **Multiply the matrices**: \[ A A^* = \alpha^2 \begin{pmatrix} 1 & 1+i \\ 1-i & -1 \end{pmatrix} \begin{pmatrix} 1 & 1-i \\ 1+i & -1 \end{pmatrix} \] Now, we will perform the multiplication: - First row, first column: \[ 1 \cdot 1 + (1+i)(1+i) = 1 + (1 + 2i - 1) = 2 \] - First row, second column: \[ 1 \cdot (1-i) + (1+i)(-1) = (1-i) - (1+i) = -2i \] - Second row, first column: \[ (1-i) \cdot 1 + (-1)(1+i) = (1-i) - (1+i) = -2i \] - Second row, second column: \[ (1-i)(1-i) + (-1)(-1) = (1 - 2i + i^2) + 1 = (1 - 2i - 1) + 1 = 2 \] Therefore, we have: \[ A A^* = \alpha^2 \begin{pmatrix} 2 & -2i \\ -2i & 2 \end{pmatrix} \] 5. **Set the product equal to the identity matrix**: \[ \alpha^2 \begin{pmatrix} 2 & -2i \\ -2i & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This gives us the equations: - \( 2\alpha^2 = 1 \) - \( -2i\alpha^2 = 0 \) From the first equation: \[ \alpha^2 = \frac{1}{2} \] 6. **Final answer**: Thus, the value of \( \alpha^2 \) is: \[ \alpha^2 = \frac{1}{2} \]

To solve the problem, we need to determine the value of \( \alpha^2 \) given that the matrix \[ A = \alpha \begin{pmatrix} 1 & 1+i \\ 1-i & -1 \end{pmatrix} \] is a unitary matrix. A matrix \( A \) is unitary if ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Assertion Reason Type|12 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|79 Videos
  • MATRICES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos
  • MEAN VALUE THEOREMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|28 Videos

Similar Questions

Explore conceptually related problems

if matrix A=(1)/sqrt2[(1,i),(-i,a)], i=sqrt-1 is unitary matrix, a is equal to

If B=[{:(5,2alpha,1),(0,2,1),(alpha,3,-1):}] is the inverse of a 3xx3 matrix A, then the sum of all values of alpha for which det (A)+1=0 is:

If A=[(0,-tan (alpha/2)),(tan (alpha/2),0)] and I is 2 xx 2 unit matrix, then (I-A)[(cos alpha,-sin alpha),(sin alpha, cos alpha)] is

if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alpha)/(2)) is purely imaginary then alpha is given by -

If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inverse of a 3 xx 3 matrix A, then the sum of all values of alpha for which det (A) + 1 =0, is

For a real number, alpha if the system [{:(,1,alpha,alpha^(2)),(,alpha,1,alpha),(,alpha^(2),alpha,1):}] [{:(,x),(,y),(,z):}]=[{:(,1),(,-1),(,1):}] of linear equations has infinitely many solutions then 1+alpha+alpha^(2) =

If A=[{:(alpha,beta),(gamma,alpha):}] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If minor of three-one element (i.e.M_(31)) in the determinant [{:(,0,1,sec alpha),(,tan alpha,-sec alpha,tan alpha),(,1,0,1)]:} is 1 then find the value of alpha (0 le alpha le pi).

If z = ((1+i)^(2))/(alpha-i) , alpha in R has magnitude sqrt((2)/(5)) then the value of alpha is (i) 3 only (ii) -3 only (iii) 3 or -3 (iv) none of these

If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h e r eI is the unit matrix of the name order as that of A , then th value of |9alpha| is equal to ________.

OBJECTIVE RD SHARMA ENGLISH-MATRICES-Section I - Solved Mcqs
  1. If A=[(1,0,0),(0,1,1),(0,-2,4)] , 6A^(-1)=A^2+cA+dI, then (c,d) is :

    Text Solution

    |

  2. Let {:A=[(1,0,0),(2,1,0),(3,2,1)]:}and U1,U2,U3 be column matrices sat...

    Text Solution

    |

  3. If U={:[(1,2,2),(-2,-1,-1),(1,-4,-3)]:}' ,sum of elements of inverse o...

    Text Solution

    |

  4. If U is same as in Example 50, then the value of {:[(3,2,0)]U[(3),(2),...

    Text Solution

    |

  5. If A and B f are square matrices of size nxxn such that A^(2) - B^(2...

    Text Solution

    |

  6. If A and B are any two different square matrices of order n with A^3=B...

    Text Solution

    |

  7. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  8. Let A=[(1,-1,1),(2,1,-3),(1,1,1)] and 10 B=[(4,2,2),(-5,0,alpha),(1,-2...

    Text Solution

    |

  9. Let A= [[5,5alpha,alpha],[0,alpha,5alpha],[0,0,5]] . If |A^2|...

    Text Solution

    |

  10. If {:A=alpha[(1,1+i),(1-i,-1)]:}a in R, is a unitary matrix then alpha...

    Text Solution

    |

  11. The value of a,b,c when [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal , ...

    Text Solution

    |

  12. If A=[a(ij)](nxxn), where a(ij)=i^100+j^100, then lim(ntooo) ((overse...

    Text Solution

    |

  13. If A and B are two non-singular matrices which commute, then (A(A+B)^...

    Text Solution

    |

  14. Find the inverse of [0 1-1 4-3 4 3-3 4]

    Text Solution

    |

  15. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  16. If A=([a(i j)])(4xx4,) such that a(i j)={2,w h e ni=j0,w h e ni!=j ,t ...

    Text Solution

    |

  17. If A is skew-symmetric matrix of order 2 and B=[(1,4),(2,9)] and c[(9...

    Text Solution

    |

  18. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  19. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  20. How many 3xx3 matrices M with entries from {0, 1, 2} are there, for wh...

    Text Solution

    |